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Abstract

The thesis targets the development of a closed error compensation feedback step inline a
fabrication process of inkjet-printed electronics. In the fabrication process, the bonding of
a microchip in a Printed Circuit Board (PCB) cavity takes place in which a repair step is
needed. These processes are carried out as part of the H2020 TINKER project, funded by
the European Union. An essential requirement in TINKER is to develop a fast and robust
algorithm that can detect whether a certain defect is present and if so segment it and
determine the corrective actions needed to initiate the error compensation process. The
main problem is that data generated from the post-process inspection system are not huge
and they are generated in batches over time based on materials availability and inspection
tools development which makes each batch of data unique. Moreover, generating a huge
dataset showing process variations, so that it can be used to train the algorithm, is not
applicable in the scope of TINKER. Therefore, an incremental training methodology is
needed so that the algorithm has the ability to increment knowledge whenever new data
is available. The thesis proposes an efficient Deep Learning (DL) based approach to act
as the inline error compensation agent. Incremental Learning (IL) is targeted so that the
DL structure is pre-trained using generic amount of data, and additionally, is able to fit
a new chunk of data while retaining the knowledge gained from the old chunks of data
without accessing them again. With the proposed approach, the DL structure will be
able learn inline the process and update its trained parameters accordingly without the
need of exhaustive training using all datasets.
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1. Introduction

1.1. Introduction

This thesis is the outcome of the work carried out as part of the TINKER EU project.
The TINKER project targets the development of a new reliable, accurate, functional,
affordable, and resource efficient pathway for fabrication of sensor packages used in
autonomous driving and self-driving cars, most importantly Radio Detection and Ranging
(RADAR) and Laser Imaging, Detection, and Ranging (LIDAR) sensors. The public
awareness and the industrial need for further miniaturization of such sensor packages is
the main driver of ongoing efforts in the automotive sector to be able to integrate such
devices into the car body like in the bumps and head lamps instead of attaching them (e.g.
on top of the car in case of LIDAR device). With that in mind, the aim within TINKER
is to enable error compensation and defect repair inline the respective fabrication step
using machine learning algorithms trained via data generated by the inline inspection.
Deep Neural Networks (DNNs) are gaining lots of attention currently in the processes of
feedback control and defect detection, and many research-based institutes are becoming
eager to utilize them in their applications [1, 2, 3]. By learning the relationship between
measurements and process parameters, DL models will be able to close the feedback loop
and provide reliable predictions. The developed DL model should be flexible, able to be
accustomed to changes that may occur in the process, and able to learn online with the
limited data available to optimize the production time based on the concept of IL [4]. IL
is a learning method in which data are provided incrementally to the model that updates
its parameters accordingly. A key feature in IL is avoiding catastrophic forgetting of old
knowledge which usually happens to batch learning based models when retrained using a
new set of data. In order to assure significant speed of the training process, the model
should not re-use or re-iterate over past data samples[5]. In the course of production of
the RADAR sensor package in TINKER, fabrication steps take place consequently and
therefore, the quality of each step should be ensured before initializing the following step.
The thesis is targeting one particular fabrication step which is the integration of RADAR
micro chips, so called bare-dies, in a PCB. At first, a cavity is milled inside the PCB and
filled with non-conductive adhesive material. After dispensing the adhesive and while it
is still soft, the bare-die is placed on top of the adhesive inside the cavity so that it is
planar and in the level of the PCB. Then the adhesive is cured with high temperature to
be hardened. The process is shown in Figure 1.1. Due to the nonuniform spreading of the
adhesive, there exist some places in the gap between the bare-die and the cavity edges
where adhesive is missing and needs to be compensated for to reach uniform height level.
Therefore, a repair step is required to fill the gap with sufficient amounts of adhesive
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1. Introduction

using inkjet printing technology. For the experimental results of this thesis, data were
acquired from the bonding of components fabricated by different companies. The PCBs
are manufactured by ROBERT BOSCH GmbH whereas the bare dies are fabricated by
Infineon Technologies AG. The components are then sent to BESI Austria GmbH where
the die-in-cavity bonding process as well as pre and post-curing inspection take place.

1.2. Problem Statement

In the course of this thesis, some challenges are addressed so as to provide an almost
optimum approach that aims at closing the feedback loop and repairing the current
fabrication step. The bare die is rectangular and has lateral dimensions of 5.65×5.17mm2

and the dimensions of the gap are in micrometers; therefore, achieving high prediction
accuracy is of major importance. Similar to accuracy is the prediction robustness which
means that by utilizing IL and using live streams of data, the model converges to the same
optimal or at least sub-optimal solution as achieved by the batch learning algorithms,
as specified in the TINKER project proposal. In a production environment, producing
relevant and sufficient data showing process variation to do offline batch training is not
possible due to the time constraints in these environments. Therefore, the best approach
is to have a pre-trained network that requires a generic dataset and fine tune the network
online based on IL concept whenever new data are provided. In this thesis, two models
are developed: the gap detection model and the depth estimation model. The gap
detection model is trying to separate the gap from the PCB image using image semantic
segmentation, while the depth estimation model aims at producing a depth map of the
segmented gap image. As the width and the depth of the gap falls in the range of tenths of
a millimetre, achieving precise predictions is crucial and quite challenging. Furthermore,
for the task of depth estimation, different approaches have been investigated, which will
be shown in detail in the methodology section, in order to reach an optimized approach
achieving the goal of that task.

1.3. Thesis Outline

The thesis is structured as follows. In the following section, previous related work will be
discussed and it is divided into three parts. The first part will give an overview of the
latest semantic segmentation methods both binary and multi-class segmentation, which
paved the way for the implementation of semantic segmentation in this thesis. The second
part will tackle the various approaches of estimating the depth using only a monocular
image to dive deep into these approaches and try to find a suitable one for the depth
estimation problem addressed in this thesis. The third part will discuss the latest IL
methods and the state of the art method. The methods discussed in the literature review
reflect back to the methodology of this thesis which will be discussed in Chapter 3. The
methodology also includes in logical order a detailed description of all the steps and
attempts toward achieving the thesis goal. In Chapter 4, the results of those attempts are
presented, discussed, and evaluated in terms of the common evaluation metrics presented

2



1.3. Thesis Outline

Figure 1.1.: Placement process of bare die in cavity. [6]

in similar research papers as well as in terms of the Key Performance Indicators (KPIs) of
the TINKER project. Finally, conclusions, limitations and possible future improvements
are presented in Chapter 5.
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2. Literature Review

2.1. Overview of Semantic Segmentation Methods

2.1.1. Definition Overview

Semantic segmentation is defined as a pixel-wise labeling in which each pixel is assigned
to a certain class; unlike classification, for instance, which assigns the whole image to
one class [7]. Hence, semantic segmentation aims at separating the image into several
meaningful parts for subsequent processing and visual understanding [8]. Currently, wide
range of applications greatly relies on semantic segmentation such as self-driving vehicles,
segmenting objects such as humans, cars, and road; and medical diagnosis, extracting
tumor boundaries and measuring tissue volumes [7, 8]. The segmentation problem is
approached with several techniques such as random forests and conditional random fields
(CRF) [8]; However, the focus of this review will be on the deep learning-based methods.
Moreover, the common deep learning models and backbone networks used as well as the
common evaluation metrics will be all discussed in the following sections.

2.1.2. Review on Deep Learning Models

In this section, we focus on the CNN-based deep learning models since there exists a wide
range of deep learning models used in segmentation which makes it very hard to cover
them all. The main reasons behind targeting the CNN-based models are that they have
proven to achieve outstanding performances on 2D image segmentation [9], and due to
the rich literature covering this topic. The method proposed by Long et al. was one of
the first CNN-based deep learning models in image segmentation [10]. They proposed a
fully convolutional network (FCN) replacing the fully connected layer with up-sampling
Conv. layers so that the dimension of the network output is the same as the input image.
Depending on skip connections which provide a link between the final layer and lower
layers, the FCN model could refine predictions by combining coarse, semantic and local
appearance information. Despite being popular and effective, the FCN model has some
limitations; for instance, it is not fast enough in case of real-time inference, and it does
not efficiently cover global context information [7].

Another popular deep learning model is based on Conv. encoder-decoder network.
Noh et al proposed a model known as DeConvNet, see Figure 2.1, which is composed
of an encoder consisting of Conv. layers adopted from VGG-16 network, and a decoder
consisting of deconvolutional (transposed convolutions) layers [11]. The decoder network
takes as input the feature vector resulted from the encoder network, and do pixel-wise
labelling to predict the segmentation mask. Another promising model known as SegNet
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2. Literature Review

[12] was proposed by Badrinarayanan et al. which is very similar to the DeConvNet. The
novelty in the SegNet resides first in its significantly small number of trainable parameters.
Moreover, the decoder network of the SegNet uses memorized max-pooling indices from
the corresponding encoder feature maps to perform feature maps up-sampling. These
up-sampled feature maps are then convolved with trainable filters to yield dense feature
maps. Ronneberger et al. also build upon the FCN model and propose the so called
U-net, see Figure 2.2, which architecture from its name has a U shape [13]. The U-net
was proposed for segmenting biological microscopy images relying on the use of data
augmentation due to the small amount of annotated images. The U-net consists of a
contracting path and an expansive path. The contracting part acts as a feature extractor
by reducing the dimension of the feature maps while increasing their number, whereas the
symmetric expansive path does the opposite by using deconvolutions. In the expansive
path, feature maps from the contracting path are concatenated with the corresponding
deconvolution layers to preserve and propagate the spatial information of the input image
to the final predicted mask. Due to the limited availability of data, high resolution images
were augmented to increase data variability, and divided into multiple sub-images to avoid
Graphics Processing Unit (GPU) limitations. One last category of CNN-based deep

Figure 2.1.: DeConvNet architecture. [11]

segmentation models is the dilated Conv. models [7]. Dilated convolutions introduce a
new parameter which is the dilation rate of the Conv. layer which defines the spacing
between the weights of the layer kernel. For instance, a 3x3 kernel with a dilation rate
of 2 will have the same size receptive field as 7x7 kernel with only 9 parameters, thus
keeping the same computational cost. The benefit of using dilated convolutions is the
ability of exponentially expanding the receptive fields without losing resolution. Yu et
al. have utilized dilated convolutions to do dense image segmentation and produce high
resolution predictions [14]. They have also shown that adding dilated convolutions to an
existing semantic segmentation model increases the predictions accuracy of that model.

2.1.3. Review on Backbone Networks

When designing semantic segmentation models, researchers often use popular network
architectures as the backbone of the encoder network, in case of encoder-decoder segment-
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2.1. Overview of Semantic Segmentation Methods

Figure 2.2.: U-net architecture. [13]

ation model, to improve model accuracy. The most commonly used backbone networks
are VGG-16, ResNet-34, ResNet-101, and Xception. These backbones are used so that
the model can benefit from their pre-trained weights and inherit their powerful feature
extraction methods. Alokasi et al. conducted a study to compare the results of ap-
plying different backbone networks to the U-net model [15]. When being tested on a
specific dataset, Inception V3 backbone achieved the highest Mean Intersection over
Union (MIoU), followed by VGG-16 and ResNet-34 respectively, while the original U-net
achieved the lowest MIoU. The IoU and MIoU are common powerful evaluation metrics
in image segmentation, since they compute the coincidence degree between predicted and
actual boundaries and thus reflect the performance of the model directly [16]. Moreover,
Zhang et al. performed a comparison between different backbone networks applied in
U-net and AD-LinkNet [17] to find the best combination achieving highest segmentation
performance [18]. Testing the models on segmenting roads in rural, urban, and coastal
scenes, they concluded their performance in Table 2.1.

Network Structure IoU Score (%)
Unet-VGG-16 62.94
AD-LinkNet-ResNet101 63.37
AD-LinkNet-ResNet34 64.73
AD-LinkNet-Xception 64.81

Table 2.1.: Performance Comparison with Different Backbones.
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2. Literature Review

2.2. Depth Estimation Based on Deep Learning

2.2.1. Definition Overview

Estimating the depth information from image datasets is an important task for several
applications such as localization, navigation, and object detection [19]. Prior to deep
learning, depth estimation was achieved using geometry-based methods or sensor-based
methods [19]. The working principle of the geometry-based methods is the recovery of
3D depth information based on geometric constraints in a series of 2D image sequences.
One example of these methods is the stereo vision matching which, analogous to the
human eye, recovers 3D structure of a scene by observing two images’ viewpoints [19, 20].
Moreover, from the name, the sensor-based methods estimate depth information utilizing
depth sensors such as LIDAR and RGB-D cameras. On the other hand, deep learning
methods based on a single image received recently more attention due to the low cost and
wide applications of the monocular RGB cameras [19, 20]. Using various deep learning
networks such as CNNs, VAEs, and GANs, monocular depth estimation is investigated
and have shown to produce outstanding and accurate predictions [20].

2.2.2. Overview on the Learning Methods

Monocular Depth Estimation (MDE) has been targeted in several applications, and while
each application has its own task, it has a unique deep learning methodology. However,
these methodologies can be summarized into three main learning methods: supervised,
semi-supervised and unsupervised learning [20]. With supervised MDE, depth information
is estimated based on a single image and the corresponding Ground Truth (GT) depth
map. The problem is regarded as a regression task in which the estimator learns to
predict the pixel-wise depth value minimizing the error between predicted and GT depth
map. According to [21], the depth estimation of a single image was solved using CNN
composed of two components: one that predicts a coarse depth map and another refines
that prediction. The output of the coarse-scale network is a blurry depth map containing
only a global view of the scene which is then fed to the refining network to yield a refined
scene capturing the local details such as objects and edges. The network predictions
were evaluated based on the common evaluation criteria, which will be mentioned in a
following section, achieving a new state-of-the-art in the time of the paper.

Moving on to the unsupervised learning methods, also sometimes called self-supervised,
they usually use the constraints between frame sequences [22, 23] or stereo left and
right images [24, 25] as the supervisory signal instead of a direct GT depth map used
in supervised methods. Zhou et al. proposed a method which uses a depth network
to estimate the depth map using a single image, and a pose network that regresses the
transformation between frames for visual odometry [22].

Since unsupervised learning methods lacks the need of GT labels during training,
their performance is still far behind the supervised methods. Therefore, semi-supervised
learning methods have been proposed to increase the estimation accuracy and enhance the
scale consistency while still reducing dependency on GT labels [19, 20]. Semi-supervised
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2.2. Depth Estimation Based on Deep Learning

methods are usually used with other information such as synthetic data, surface normals,
and LIDAR as relatively cheap unlabeled data[26].

2.2.3. Review on Supervised MDE

In this section, different supervised MDE approaches are discussed as well as the current
state-of-the-art approach. Based on what have already been discussed in the previous
section, supervised MDE is able to produce an optimum and inexpensive solution for the
MDE problem. The approaches that are mentioned in this section can be divided into two
categories: single-task and multi-task which is mainly featuring both depth estimation
and semantic segmentation as one joint task.

According to Li et al. [27], they developed an estimator that consists of two stages.
First, the image pixels are grouped into super-pixels and image patches of different known
sizes around the super-pixel center are extracted. Then a deep regression CNN is modeled
to learn the relationship between the image patches and corresponding GT depths. Second,
the estimated depth is refined from super-pixel level to pixel level using hierarchical CRF
[20, 27]. The goal of the CRF method is to map the estimated depth values from the
super-pixel level to the pixel level by assuming first that the super-pixel has the same
depth value as the center pixel. Furthermore, the estimated depth values of the rest of the
pixels are generated taking into consideration common boundary super-pixels, coherence
between super-pixels, and local correlation structure. In most of the literature, CRFs are
used as a post processing tool for refining the predicted depth maps [28, 29, 30]; however,
it is computationally expensive. One significant improvement to the MDE single-task
category focuses on the use of CNNs in the shape of encoder-decoder network which
have shown an outstanding performance in extracting the spatial features of images
[20, 16, 31, 32]. According to Laina et al. [33], they solve the MDE task using only RGB
single images and without applying any further refining steps such as CRF. Their network
consists of ResNet-50 [34] as an encoder connected to a novel up-sampling blocks acting as
decoder. The integration of ResNet-50 network, having the advantage of skip connections,
as well as using the novel up-sampling blocks reduced the overall training time around
15%, while the predictions evaluation was shown to surpass the other state-of-the-art
method then. Another use of encoder-decoder network was presented in [35], where the
authors combined the input image with a sparse depth map to provide the model with
the scale information. In that case, it is required to have priory known sparse depth
points, which is not always feasible to obtain, so that the developed network can predict
the complete depth map. Finally, Lee et al. proposed an encoder-decoder approach which
uses novel local planar guidance layers which explicitly map the image features to the
desired depth predictions [36]. This approach produced quite outstanding results and is
considered as the current state-of-the-art.

Another set of papers [37, 38] approached the MDE by integrating it with a semantic
segmentation task as one joint-task since segmentation and depth estimation have some
common features such as detecting object boundaries and recognizing background classes.
In this approach [37], the two tasks are done recursively starting with segmentation
and then applying depth estimation to improve the depth estimation performance since
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instances within each segmented object are more probable to have similar depth values.
The architecture used was a bit similar to the one developed in [33], where it consists
of residual blocks structured in the encoder and the up-sampling blocks. In [38], the
proposed method also does the segmentation task first on two levels: category level where
only the background classes are segmented; and instance level where the objects instances
are detected. After that, the depth is predicted for each level and then composed together
into globally coherent depth map.

2.2.4. Review on Loss functions and Evaluation Criteria

In this subsection, we focus on discussing the commonly used training loss functions
which greatly affect the learning process. In addition, we present the most common
evaluation criteria which are used in almost all the research papers covering the topic
of Depth estimation. Treating the MDE task as a regression problem, the standard
pixel-wise L2 loss was used [27, 35] as given in equation (2.1). Eigen et al. and Lee et
al. [21, 36]used the L2 loss function as well but with minor modification to make the
function scale-invariant as shown in equation (2.2). In order to take into consideration
the L1 loss function, Laina et al. and Zhang et al. [33, 37] used the reverse Huber loss
function which is a piece-wise function consisting of both L1 and L2 loss functions as
shown in equation (3.6). Combining both functions takes the advantage of the L2 loss,
which puts high weight towards pixels with high residuals, as well as the advantage of the
L1 loss, which has greater impact when the residuals are low. Last, Wang et al. used L1
loss function combined with segmentation loss function since they were solving the MDE
task as joint-task with segmentation [38].

L2 =
1

2N

N∑︂
i=1

∥yi − ŷi∥
2
2 (2.1)

L2SI = 1
N

∑︁N
i=1 d

2
i − λ

N2

(︂∑︁N
i=1 di

)︂2
,

di = log(yi)− log(ŷi)
(2.2)

The most popular evaluation metrics used among researchers in the MDE task are:
Absolute Relative Difference (AbsRel), Root Mean Square Error (RMSE), Log10 error,
Square Relative Error (SqRel) and accuracy with threshold. The mathematical formula
of each of these metrics is shown in equation (2.3).

AbsRel = 1
N

∑︁N
i=1

|yi−ŷi|
yi

RMSE =
√︂

1
N

∑︁N
i=1 |yi − ŷi|

2

Log10 = 1
N

∑︁N
i=1 |log(yi)− log(ŷi)|

SqRel = 1
N

∑︁N
i=1

|yi−ŷi|
2

yi

Accuracy with threshold (δ < thr) : % of di s.t. max( yiŷi
, ŷiyi ) < thr,

where thr = 1.25, 1.252, 1.253

(2.3)
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Where yi is the GT depth and ŷi is the predicted depth value for a total of N data samples,
in all equations (2.1), (2.2), and (2.3).

2.3. Overview of Incremental Learning Methods

2.3.1. Definition Overview

Incremental Learning refers to a learning process in which machine learning models learn
continuously new information while keeping almost all the knowledge they have learnt
before [39]. Trying to resemble human learning and thinking, IL allows for memorization
and elimination of the need to do exhaustive retraining when receiving new data, and
thus increasing memory usage efficiency. IL is mainly trying to fill the gap of catastrophic
forgetting which most of the traditionally trained models suffer from when retrained
with new sets of data[4, 39]. When retraining a previously trained model, the weights
are adjusted by a back-propagation process based on the loss computed on available
data, which will reduce the performance of the model on the past data [4]. Since real-life
environments are usually dynamic and evolving, an intelligent agent should be able to
keep up with these changes. With new streams of data coming out of such environments,
retraining the agent from scratch will lead to continuously resetting its knowledge to the
current state of the environment. That is why dynamic environments can no longer be
modelled using classical learning methods that require big, static, identically distributed
and well labeled data, which are very hard to satisfy especially in production environments.
As a result, IL has received lots of attention in the recent years, yet it remains a long
term challenge [4, 40]. There exist three main types of IL while each type has different
implementation methodologies; a brief review of these types and methods are discussed
in the following sections.

2.3.2. Overview on IL types

Many approaches have discussed IL in the recent years, but comparing these approaches
is difficult due to the variety of frameworks. However, they can be concluded in three
main types: task-IL, domain-IL, and class-IL [41]. Task-IL refers to the case where the
agent is trying to incrementally learn a number of tasks given that they are distinct and
clearly distinguishable. This can be achieved, for instance, by specifying an output layer
for each task or even developing a separate network for each task. However, the challenge
here is to find computationally non-complex methods to use information learnt in one
task to improve performance on other tasks.

Second is the Domain-IL which can be described as incrementally learning the same
kind of problem but with different contexts and conditions. Regardless of the task, the
agent is producing the same possible outputs adapting on possible domain shifts, such as
recognizing objects under different lighting conditions or estimating depth in both indoor
and outdoor scenes. The challenge of this type is to prevent catastrophic forgetting and
improve generalization.
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Finally, Class-IL can be referred to as the ability to distinguish between a growing
number of classes or objects. It can also be identified as one or more Task-IL episodes,
where each episode has a number of classes and the agent should be able to discriminate
between classes within an episode and classes from different episodes. For example, the
class-IL agent might learn about cars and ships and later about trucks and planes, while
in task-IL the agent is not expected to distinguish between vehicles in different episodes
(i.e. cars and trucks).

2.3.3. Review on IL Methods

IL addresses the problem of catastrophic forgetting, and promotes learning about new
tasks while retaining the knowledge about old ones; thus, all the methods to be mentioned
aim for that. Andrade et al. implemented a task-IL method using a Multi layer Perceptron
(MLP) based on support vector machine (SVM) for weights adjustment and correction
[42]. Their methodology is based on the transfer of weights between a source network and
a target network which has one extra node in the output layer representing the addition
of a new class. The target network is then retrained for half the number of epochs used
while training the source network, and using a training sample which contains data of
the new class and data from the original training sample. Lopez-Paz et al. proposed
another task-IL model called Gradient Episodic Memory (GEM) that aims at minimizing
forgetting and allowing transfer of knowledge forward and backward between tasks [43].
Moreover, Tercan et al. trained an artificial neural network (ANN) using memory-aware
synapses to improve quality prediction of different injection molding tasks [5]. Their
approach depends on formulating a special training loss function consisting of different
parameters to direct the IL process based on the so called importance values. A similar
approach is also discussed in [44, 45], where the main novelty resides in the loss function
and the way of choosing its hyper-parameters to incrementally learn to segment more
objects in an image.

As an example for domain-IL, Verma et al. proposed a methodology called Efficient
Feature Transform (EFT) which can be generalized to a variety of network [46]. The main
feature of EFT is that the network is partitioned into a global network, which can be any
pre-trained architecture that is kept frozen during the training process, and task specific
transformations which weights are trained and customized to the specific task. They also
utilize a loss function that is composed of two parts; one for learning the new task and
the other for not forgetting about old tasks. The method was tested on CIFAR-100 and
ImageNet datasets. Mirza et al. continue the discussion on domain-IL with an approach
for autonomous driving in all weather conditions [47]. Their method is based on the first
and second order of domain statistics as the supervisory signal; which are recorded for
each task. So whenever a new task arrives, the statistical vectors for that task is plugged
into the model which correspondingly starts to perform well on that task.

For class-IL, Kolesnikov et al. proposed a classical approach which can learn classifiers
and feature representations at the same time [48]. More efforts are concluded in [49, 50]
aiming at improving the class-IL efficiency. The thesis is targeting the domain-IL, since the
segmentation and depth estimation problems are not changing; however, the conditions
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and contexts of data used for both models are changing. Based on the methods of
literature, a feasible methodology targeting the project KPIs is chosen for this thesis.
Furthermore, it is worth mentioning that the term online learning is sometimes used in
literature interchangeably with IL. However, in the scope of this thesis, online learning is
regarded as a training method in which minimum amount of data (i.e. one data sample)
is provided to the model in each incremental step, so that the model would undergo as
many incremental steps as the number of provided data samples.
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3.1. Data Pre-processing

3.1.1. Data Description

Before diving deep in the methodology of the thesis, the used data should be well presented
and described as well as the excessive data processing that has been implemented. The
models developed in this work use real data coming out of the die in-cavity bonding
process as well as pre and post curing inspection processes carried out in the premises
of BESI Austria GmbH. The image data of interest were recorded after the bonding of
eight RADAR PCBs, each has six bare-dies, summing to a total of 48 units, which will
be referred to as substrates in the context of the thesis. For all the substrates, monocular
images are recorded after curing the glue; while for only 30 substrates, before-curing
images were recorded. The images were provided at different intervals of time; therefore,
they have different quality features and illumination conditions due to the continuing
development of the inspection system. Moreover, only for 24 substrates, 3D depth images
were recorded using microscopic camera. Table 3.1 summarizes the total amount of data
and their specifications. The first 18 images of the after-curing substrates were recorded
as part of an early attempt; then using a higher quality camera, images of 30 substrates
were recorded, before and after curing each with two different illumination conditions.
After that, more images of only 24 of the 30 latest substrates were recorded as well as
their 3D depth data using a microscope camera at PROFACTOR GmbH. The monocular
images are of high resolution and their sizes range from 768x768 (microscope images)
to 2219x2219 (HQ monocular images), whereas the 3D depth images have resolution of
768x768.

3.1.2. Data Preparation and Processing

In order to prepare the image data for training the gap segmentation model, GT masks
should be generated. First of all, using GIMP software tool, the cavity mask and the chip
mask of one sample image were manually extracted. Then, using both masks, template
matching was applied to the rest of the images to extract the chip and cavity masks in
each image. Subtracting both masks yield the mask of only the gap in between which is
the target GT image. Template matching is an OpenCV library which, given an image
and a template, tries to find the location of the template inside that image. However,
the process needs lots of arguments’ tuning and requires that the template be almost the
same among all images. For instance, if there is a slight difference in illumination between
two substrate images, using one template for both images would not work. Figure 3.1 is a
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3. Methodology

Data Type Data Amount Recording Conditions
Monocular Images 18 substrate images (after

curing)
Monocular camera

30 substrate images (before
curing)

High quality monocular camera
applying two different illumina-
tion conditions

30 substrate images (after
curing)

High quality monocular camera
applying two different illumina-
tion conditions

24 substrate images (after
curing)

Microscope camera

3D Depth Images 24 images (after curing) Interferometry
Microscope camera

Table 3.1.: Data breakdown.

diagram showing the labelling process for generating gap masks. All the images and labels
are then cropped to the nearest size divisible by 256 and then divided into non-overlapping
patches of size 256x256 to avoid GPU memory limitations. Now that the image data
for gap segmentation are prepared and GT masks are generated, the depth data should
be prepared as well for training the depth estimation model. As already mentioned, the
final goal within the TINKER project is to repair each substrate by printing the missing
amount of adhesive inside the gap. To do this, there should be a standard reference to
which all images relate to make the printing process accurate. Moreover, in each substrate
image, the bare-die is slightly rotated as a result of the larger cavity and the soft glue
underneath. To mitigate all these problems, each image is counter rotated to compensate
for the bare-die rotation and then cropped from the two corner circles’ centers. In order to
detect the rotation of each bare-die, the corners of the chip should be detected either using
template matching or Harris corner detection method. Both methods have advantages
and drawbacks; however, template matching was preferred because it can be generalized
to more images and has less computations. To crop the images, the corner circles were
detected using circle Hough transform which tries to find all the candidate circles in an
image based on specified radii range and distance between centers. The same processing
is also applied to the corresponding 3D depth images. Finally, the HQ monocular images
were resized to the size of the depth images. Figure 3.2 shows one data sample before
and after applying the mentioned processing.

The overall training time of the models was around 4 hours using a NIVIDIA 1050 Ti
GPU with 12GB memory. The training of the gap segmentation is a bit more complex
than that of the MDE model due to the number of incremental steps. Therefore it takes
around 2.5 hours based on the number of epochs and the total number of training samples
in each incremental step. All the DL models were coded using python programming
language and trained using the TensorFlow framework.
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Figure 3.1.: Process of generating GT gap masks.

Figure 3.2.: Data sample of a 2D image and the corresponding depth map before and
after processing.

3.2. Gap segmentation

3.2.1. Model Selection and Training

Based on the literature review, we learnt that there are several networks used for semantic
segmentation, yet the U-net was the most famous one especially when the training data
are few. Different backbone networks have been tested to see which would achieve
better performance with the U-net. Those were VGG-16, ResNet-34, and inception-v2
which had the least number of training parameters when compared to other networks
mentioned in the literature such as ResNet-101 and Xception. The U-net was imported
from keras built-in models, assembled with each backbone network, and trained using
the pre-processed image data. The first model was the base model and was trained with
only the first 18 substrate images, since this was the initial dataset, and the rest of the
images are supplied to the model incrementally. Implementation of IL will be discussed in
details in the fine tuning section. Patching the 18 images produced a total of 450 images
of equal size (256x256), then they were split into training, validation, and testing sets:
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70%; 15%; 15% respectively. Figure 3.3 shows a sample training tuble after patching the
images. Data augmentation was applied on the training and validation sets to enhance
generalization and avoid overfitting. The imagenet pre-trained weights were used for
initializing the encoder weights to improve the learning process and speed up convergence.
The model was trained for 75 epochs utilizing Adam optimizer [51] presented in Equation
(3.5) and a constant learning rate of 1 × 10−4. Because we are trying to segment only
the gap, the segmentation task in this work is binary which is labelling pixels as white if
inside the gap, or else black. The training loss function used in the gap segmentation
model consists of a binary cross entropy (BCE) loss and Jaccard loss, which is commonly
referred to as IoU loss function [52]. The BCE loss is used because it employs the log
probability of the predicted values and hence penalizes those probabilities based on the
distance from the true values as shown in Equation (3.1).

Figure 3.3.: A sample training tuble for the gap segmentation model.

LBCE = − 1

N

N∑︂
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (3.1)

Where yi is the true value either 1 or 0, and ŷi is the predicted probability of the pixel
belonging to the gap for all N data samples. The IoU function measures the similarity
between finite sample sets A,B as the intersection over union as shown in Equation (3.2).
If the two entities are disjoint, the IoU equals zero, while it equals 1 if they are identical.
For minimization purposes, the jaccard loss is defined as in Equation (3.3). The IoU score
in (3.2) is used as the evaluation metric of the model.

IoU =
|A

⋂︁
B|

|A
⋃︁
B|

(3.2)

Ljaccard = 1− |A
⋂︁
B|

|A
⋃︁
B|

(3.3)
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3.2.2. Model Predictions Refinement

The output predictions of the gap segmentation model need some sort of post-processing
to ensure there are no black pixels inside the gap, which should be all in white, and
to eliminate any outlier pixels. A perfect processing candidate for those tasks is the
morphological operation using OpenCV library. They consist of several functions: erosion,
dilation, opening, and closing. The idea of erosion is to erode the boundaries of a
foreground object, usually in white; or in other words, thinning the object and removing
very small scattered noises. Dilation operation does the opposite, and is very useful in
filling small voids (whitening black pixels) in the object. Opening operation is just erosion
followed by dilation, while closing is dilation followed by erosion. For the purpose of
refining the predicted gap images, opening and closing were applied to remove noise and
outlier pixels first, and then fill any black voids inside the boundaries of the gap, while
preserving the size of the gap. However, testing the segmentation model’s predictions was
done without applying these operations. Results of morphological operations can be seen
in Appendix A.

3.3. Depth Estimation

3.3.1. Model Selection and Training

For depth estimation, several approaches were investigated as to find the best suitable one
for the task. We will discuss each approach in terms of data preparation, model selection,
and hyper-parameters. All approaches were evaluated using the same popular evaluation
metrics that were mentioned in the literature review in section 2.2.4. Since the gap mask
has been extracted from the gap segmentation model, all substrate images and 3D depth
maps are multiplied by the mask to get only the gap contour as shown in Figure 3.4.

Figure 3.4.: A sample of the input-output tuble for MDE.

First, a pixel-wise regression model utilizing a CNN architecture was used. This model
tries to predict the depth value for each pixel, and so the input images were divided into
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small patches of size 65x65, whereas the target labels were the depth values of the center
pixels of these patches. Using this approach, one could generate a huge dataset, equal
to the number of pixels of the all images. However, the size of the input image should
be equal to the size of the corresponding depth image, which requires resizing the high
resolution input images to the small size of the depth maps. The model architecture is
shown in Figrue 3.5; it consists of three double Conv. layers, each of which is followed
by an average-pooling layer. Then the output is flattened and connected to three fully
connected layers, each followed by a dropout layer. The hyper-parameters of the model
were manipulated to get the best out of this model including the number of Conv. layers,
number of filters, and number of fully connected layers. The model used the Mean Squared
Error (MSE) as the training loss function (3.4), and Adam optimizer with a learning rate
set initially at 1× 10−4 and decayed exponentially with a rate of 0.9 every 25 epochs. At
the end of the 100 training epochs, the learning rate had been decayed to the value of
729× 10−7. Equation (3.5) shows the weights optimization based on Adam optimizer and
the decaying learning rate.

MSE =
1

N

N∑︂
i=1

(yi − ŷi)
2 (3.4)

a
Θt = Θt−1 − η.∆Θ,

η = lr0 × decay
(step/DecaySteps)
rate

(3.5)

Where Θt−1 and Θt are the trainable weights at time t− 1 and t, respectively. ∆Θ refers
to the Adam optimization function based on the gradient of the loss function with respect
to the trainable parameters. The model was trained for a total of 100 epochs. The
model produced good and accurate pixel-wise depth prediction; however, it showed poor
generalization on the unseen data.

In the second attempt, an encoder-decoder network was implemented; more specifically,
a U-net with residual blocks employed in both encoder and decoder networks similar to
what was done in [33]. Both 2D monocular images and corresponding depth maps were
divided into smaller patches of size 384x384. Moreover, the images were augmented with
a random flip to improve data balance since higher depth values usually appear in the gap
bottom corners. Unlike the previous model, this model directly predicts the depth map
of a given monocular image while transferring the spatial information of the image to
the depth map. The structure of the encoder is composed of five down-sampling blocks;
each block consists of 2 Conv. layers with kernel sizes 3x3 added with a residual Conv.
skip connection with kernel size 1x1. After addition, an activation layer is applied and
then a max-pooling layer for halving the dimension. The decoder network consists of four
similar up-sampling blocks; the only difference is replacing the max-pooling layer with an
up-sampling layer for up-scaling. Each block in the encoder, apart from the last block,
is concatenated with the corresponding decoder block for the transfer of image spatial
information. The Res-unet architecture is shown in Figure 3.6. The reverse Huber loss
function (berHu), in equation (3.6), was used in this attempt for computing the gradients
as it combines both L1 and L2 loss functions and benefits from the advantages of both
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Figure 3.5.: The CNN architecture of the first MDE attempt.

functions.

berHu =

{︄
|∆y| |∆y| ≤ c

∆y2+c2

2c |∆y| > c
,

c = 1
5maxi(|yi − ŷi|)

(3.6)

Where yi is the GT depth, ŷi is the predicted depth value, and ∆y is the computed error
between them. Adam optimizer was used for optimizing the gradients with a constant
learning rate equal to 1× 10−4 throughout the 100 training epochs. The Res-unet model
produced better results and showed very good generalization on unseen images as well;
however, it showed non-negligible error in total depth volume between predictions and
GTs.

The third attempt builds upon the second and does not have much changes. Inspired
from [37, 38], the segmentation model used for detecting the gap was used while freezing
the encoder layers and retraining the decoder layers. This way, the depth estimation
model can directly utilize the encoder, which was trained to extract the features and the
spatial information of the images, and with much less training time. The model uses a
new loss function which is a combination of three loss functions similar to what was done
in [54]. The total loss function is presented in 3.7.

Combined = α1LSSIM (z, ẑ) + α2LMAE(z, ẑ) + α3Lreg(z, ẑ) (3.7)

where ẑi is the predicted depth map and zi is the true depth maps. LSSIM is the Structural
Similarity Index which computes similarity between images on the basis of luminance,
contrast, and structure 3.8; and LMAE(z, ẑ) is the mean absolute error for pixel-wise
comparison 3.9. Moreover, Lreg is the Depth Smoothness loss which compares the two
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Figure 3.6.: The res-unet architecture. [53]

depth maps based on their gradients in x and y directions as in 3.10. Inspired from [55],
the total Lreg loss is the mean of the gradients’ sum over N pixels as shown in 3.11. α1,
α2, and α3 are weighting factor set empirically to 0.85, 0.1 and 0.9, respectively. After
being trained for 100 epochs, the final model produced the best performance especially in
terms of the error of the total depth volume as will be shown in results section.

LSSIM (z, ẑ) =
1

2
(1− (2µẑµz + c1)(2σẑz + c2)

(µ2
ẑ + µ2

z + c1)(σ2
ẑ + σ2

z + c2)
) (3.8)

where µẑ is the mean of ẑ, σẑ is the standard deviations of ẑ, µz is the mean of z, σz is
the standard deviations of z, σẑz is the covariance of ẑ, and c1=0.012 and c2=0.032.

LMAE(z, ẑ) =
1

N

N∑︂
i

|zi − ẑi| (3.9)

Sx = ▽x ẑi × e
1
N

∑︁N
i |▽x zi|

Sy = ▽y ẑi × e
1
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∑︁N
i |▽y zi|

(3.10)

Lreg(z, ẑ) =
1

N

N∑︂
i

|Sx|+ |Sy| (3.11)

3.4. Fine Tuning Approaches

Given that the gap segmentation model and the MDE model have been established and
trained with initial datasets, this section discusses how to deal with new coming data that
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should be fed to the model. Moreover, it will discuss two main techniques of supplying
the new data to the trained models in order to fine tune their parameters accordingly.

3.4.1. Training Samples Selection

As already mentioned in section 3.1.1, there are four sets of substrate images; each
with one or more different settings affecting the quality and appearance of these images.
Moreover, one substrate might have more than one image; however, each has different
image features. Figure 3.7 shows a sample image from the four different datasets available,
where the second and forth images represent the same substrate in different recording
settings. Therefore, the gap segmentation model has to be trained on all the four datasets
to be able to have good performance on them all. Moreover, because the GT depth images
of the second and forth sets are available, the MDE model should be able to perform well
on both sets as well.

Figure 3.7.: A sample image from each dataset in the order of usage.

For retraining the gap segmentation model with a new dataset, sample images are
selected that almost present all the features in that dataset and have as minimum noises
and outliers as possible. A sample selection algorithm was implemented for that task,
which aims at selecting few images, five in particular, from a dataset based on three
functions. The first function finds the difference between the image histogram before and
after histogram equalization and sorts the images accordingly to choose images with well
distributed pixel values. The second function sorts the images in terms of the volume of
the glue material, roughly estimated after applying a threshold function. This attribute
aims at eliminating the images in which the glue material was printed by mistake outside
the cavity boundaries, which provides false gap information to the model. The third
function finds the rotation angle of the bare-die in the image in order to select images
with various chip tilt angles. Each function yields some candidate images, then the most
common five images among those candidates are selected. For the third dataset, the last
function was not applied since there was almost no bare-die rotation, which occurred
during the curing of the glue. On the other hand, since there is only two sets of images
whose depth information is available, the data were fully supplied to the MDE model
without any sample selection processing. The reason is that depth data are already few
and estimating depth from monocular images is already a complex task.
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3.4.2. Transfer Learning

Transfer learning is a very commonly used approach when we need to transfer the learnt
knowledge of one model to another. To achieve this, the previously trained weights of a
base model are transferred to another model which is trying to do a similar task to the one
the base model was trained on. For example, the trained weights of a model classifying
between cats and dogs can be used to train a model classifying between horses and cows.
In fact, transfer learning is implemented in the gap segmentation and the MDE models as
they were already trained with pre-trained weights instead of randomly initialized weights.
Using pre-trained weights, the new model is able to converge to a good fit much faster
than if it was trained without those weights. That being said, transfer learning might
provide a solution for updating both the segmentation model and the regression model in
the presence of new data, and that is why it was investigated.

First, a new segmentation model, exactly the same as the base segmentation model,
was created and initialized with the same weights of the base model. After applying the
same data pre-processing mentioned before, the model was retrained using selected images
from the second dataset for only 30 epochs. The model achieved good performance on
unseen images from the current dataset, yet the performance on the base dataset has
declined noticeably. The same step was repeated with the rest of the datasets. After each
step, the performance of the model on old datasets was declining drastically, which is the
definition of catastrophic forgetting. The performance of the models utilizing transfer
learning is presented in the results section.

3.4.3. Incremental Learning

In the scope of this thesis, the IL task belongs to the Domain-IL type in which the
model tries to learn the same problem and doing the same task but in different domains
and conditions. To be more specific, the gap segmentation model and the MDE model
should achieve optimum performance on the different available datasets which were
recorded in different settings. The models are trained once using one dataset, and then
the remaining datasets are supplied incrementally to the model representing streams of
new data that resembles a change in a production environment. The methodology of
this thesis is adopted from [44, 45] in which the authors apply incremental learning to a
segmentation task. In this thesis, we try to apply this method to both segmentation and
regression models, since it is applicable to any deep network architecture and it has shown
outstanding results. The training scheme of the method is shown in figure3.8, where we
have a base pre-trained model that undergoes k incremental steps corresponding to k new
datasets. In each step, a new model, with the same structure and weights as the base
model, is created and complemented with a knowledge distillation feature which prevents
catastrophic forgetting. Knowledge distillation is achieved through the proper choosing
of the training loss function which highly affects the learning process of the model by
penalizing the model weights and directing the model to learn without forgetting. The
total loss function is shown in Equation (3.12).
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3.4. Fine Tuning Approaches

Figure 3.8.: Knowledge distillation scheme of the IL method at k-th incremental step.
[44]

Ltotal = L0 + λDLD (3.12)

Where L0 is the initial loss function used for learning the new information, λD represents
the distillation factor which is a hyper-parameter, and LD ∈

{︂
L

′
D, L

′′
D, L

′′′
D

}︂
is a distillation

loss for retaining the old information. For gap segmentation task, BCE combined with
jaccard loss funtion was used for learning new datasets’ information. Equation (3.13)
shows the loss function.

Lseg0 = − 1

N

N∑︂
i=1

Yilog(Mk(xi)) + (1− Yi)log(1−Mk(xi))− 1 +
|Yi

⋂︁
Mk(xi)|

|Yi
⋃︁
Mk(xi)|

(3.13)

Where Yi is the GT, xi is the data input, and Mk(xi) is the prediction of the k-th
incremental model, for N data samples. The first distillation loss function L

′
segD

, shown
in Equation (3.14), is applied to the output predictions of the models, Mk and Mk−1 in
order to compare both of them and apply required penalty to keep the k− th model from
being biased to the new dataset’s information. Because L

′
segD

is applied to a classification
layer, BCE was used combined with jaccard loss as well. This combination was preferred
based on empirical results.

L
′
segD

= − 1
N

∑︁N
i=1Mk−1(xi)log(Mk(xi)) + (1−Mk−1(xi))log(1−Mk(xi))

−1 +
|Mk−1(xi)

⋂︁
Mk(xi)|

|Mk−1(xi)
⋃︁

Mk(xi)|
(3.14)

Where Mk−1(xi) is the base model prediction. L′′
segD

is applied to the intermediate feature
space, which is the output of both encoders. Since the last layer of the encoder is not
producing a classification output but rather a feature space, the same distillation loss
function as L′

segD
cannot be applied. Another loss function is needed that should keep the
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3. Methodology

two feature spaces as close as possible such as the standard L2 loss function. Denoting the
encoder of the model as E, the second distillation function can be written as in Equation
(3.15).

L
′′
segD

=
1

N

N∑︂
i=1

∥Ek−1(xi)− Ek(xi)∥22 (3.15)

Finally, L′′′
segD

is applied to the output of the last three decoder layers; the number of layers
is also a hyper-parameter. The second distillation function was used since the output of
the decoder layers of each model should be kept close as well. The final distillation loss
function can be rewritten as in Equation (3.16).

L
′′′
segD

=
1

N

N∑︂
i=1

3∑︂
l=1

⃦⃦
dlk−1(xi)− dlk(xi)

⃦⃦2
2

3
(3.16)

In addition, another distillation feature can be added which is keeping the encoder of the
k − th model frozen (EF ) while learning the new information through the decoder only
as illustrated in Figure 3.9. This aims at preserving the feature extraction capabilities of
the encoder. That being said, more than one distillation function can be used in the same
incremental step if needed. For example, freezing the encoder and applying the distillation
loss function on the output layers of the two models were used in the first attempt. The
second distillation loss function was applied alone once and then combined with the first
distillation loss function without freezing the encoder, since the loss is applied on the
encoders’ outputs. The third distillation loss function was only implemented on its own
due to high computational costs. Choosing the suitable distillation criterion depends on
the complexity of each incremental step.

Figure 3.9.: The two states of the encoder at the k-th incremental step. [44]
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3.4. Fine Tuning Approaches

Aside from the distillation criterion, optimizing the hyper-parameters is essential to
optimize the model’s performance and reduce the computational cost. First of all, the
effect of the distillation factor λD needs to be modelled and carefully chosen to prevent
the model bias towards any of the datasets. Moreover, its value is proportional to the
number of incremental steps and to how similar one dataset is to another in terms of
spatial features. The learning rate is crucial as well, since its value defines the size of
the learning steps that the model takes to reach the global minima of the learning curve.
Going through the incremental steps, the learning curve is becoming more and more
complex; and the more features and new information is added, the less the value of
the learning rate. The number of training epochs in each incremental step reflects the
computational cost, that is why it should be kept as minimum as possible. The optimum
number of epochs reached empirically was 30 epochs in each incremental step.

The same incremental procedure can be applied to the MDE model because it uses
the same network architecture; however, the loss functions are different since this is a
regression problem. For both the initial loss function LMDE0 and the first distillation
loss function L

′
MDED

, the combined loss in 3.7 was used. For the second and third
distillation loss functions, L′′

MDED
and L

′′′
MDED

, berHu (3.6) loss was used given that
both the encoders and the last decoders’ layers produce regression outputs which values
should be kept similar. The developed MDE model went through one incremental training
step since there are depth labels for only two image datasets. The two image datasets
are describing the same substrates but are different in terms of the recording setup, and
consequently they have different resolution and different features. Therefore, the depth
measurements of both datasets are actually the same. The incremental training was
concluded in 45 epochs which is about half the number of epochs needed for training the
base MDE model.
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4.1. TINKER KPIs

In TINKER, the targeted KPIs are defined so as to properly assess the quality and
robustness of the developed models. Moreover, the targeted KPIs aim for beyond state
of the art. For both gap segmentation and depth estimation, the targeted KPIs focus
on the deviation of the model predictions with respect to the true labels. The targeted
deviation was set to a maximum of 10% of the true label. For gap segmentation, the IoU
metric is used which already computes the percentage of true predictions with respect to
the union of true and predicted entities. Simply the deviation is interpreted as 1− IoU ,
and so the KPIs for gap segmentation is achieving a minimum mean IoU of 90%. For
depth estimation, the deviation of the predicted depth values was set to 10% of the true
depth values as well. This describes the definition of the absolute relative error presented
in 2.3, which is used as an evaluation metric for the MDE models. Therefore, the target
absolute relative error value of the MDE models is 0.1.

KPIs Value Description

Gap segmentation MIoU > 90% of
true label

The percentage of true predictions repres-
ented by the IoU metric

Depth estimation Deviation < 10%
of true depth val-
ues

The deviation of the predicted depth values
relative to the true vales represented by the
AbsRel metric

Table 4.1.: Summary of identified KPIs with respect to models’ predictions.

4.2. Gap Detection

4.2.1. Base Model Selection and Training

In this section we focus on the results of the gap detection base model, including
comparative evaluations of various attempts and models. In addition, the results of
the best reached model are presented including more comparative evaluations of various
hyper-parameters in order to conclude their effects. As mentioned in the methodology
section, the U-net was used for the gap segmentation task with three candidate backbones:
VGG-16, ResNet-34, inception-v2. Comparison between the backbones is conducted in
terms of training parameters, training time in minutes of 75 epochs, precision (4.1), recall
(4.2), and mean IoU score. The evaluation metrics are computed on unseen testing images.
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The precision and recall metrics reflect the performance of the model in an unbiased
fashion evaluating the performance of the model on pixels belonging to the gap. Since the
class of gap pixels is small within the image, computing the accuracy, which reports the
percent of pixels that are correctly classified, provides misleading model evaluation. On
the other hand, precision reports how many of the predicted gap pixels actually belongs
to the gap; while recall reports how many of actual gap pixels the model was able to
correctly predict. Table 4.2 reports the quantitative comparison between the three models.
Moreover, Figure 4.1 shows the training and validation learning curves of the models.
Qualitative comparison is reported as well in Figure 4.2. From these comparisons, it can
be noticed that the all models achieved similar evaluation scores, yet they differ in terms
of the training time. That is why U-net with ResNet-34 was preferred due to the less
training time.

In order to test the effect of the data processing functions and hyper-parameters tuning,
an ablation study was conducted utilizing the U-net with ResNet-34 backbone. Table 4.3
reports the effects of such functions and parameters on the performance of the model. The
variables in the table are manipulated one at a time while keeping the other variables the
same as in the original model, whose performance is reported in table 4.2. Removing data
augmentation functions, which is the first variable, led to a slight drop in the performance
of the model. Since the dimension of one patch image is less than the dimension of the
bare-die, negative patches (NP) that do not contain any gap information were present
in the dataset. Removing those patches serves to reduce the class imbalance since the
number of non-gap pixels is much larger than that of the gap pixels. Freezing the encoder
of the model and learning through the decoder parameters only showed a drop in the
model performance as well. Finally, a learning rate scheduler was applied to reduce the
initial value of the learning rate (1× 10−4) exponentially with a decay rate of 0.5 every
10 epochs. Decaying the learning rate resulted in a slow convergence and therefore was
not preferred.

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

Where True Positive (TP ) is the number of pixels actually belonging to the gap and were
correctly predicted, False Positive (FP ) is the number of pixels not belonging to the gap
and were falsely predicted as gap pixels, and False Negative (FN) is the number of gap
pixels that were falsely predicted as non-gap pixels. Note that the non-gap pixels which
were correctly predicted is not considered in any of the two metrics.

4.2.2. IL Implementation

After training the base model on the initial dataset, the other datasets are fed incrementally
to the model. The four datasets will be refered to as the following Dn where n ∈ {0, 3}.
Each dataset is divided into parts: training Dn

tr and testing Dn
ts with percentages of 80%

and 20%, respectively; whereas one third of the training data are used for cross validation.
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4.2. Gap Detection

training
parameters

training
time

precision recall mean IoU

VGG-16 24M 16.23 mins 97.60% 98.03% 95.73%
ResNet-34 24M 10.06 mins 97.15% 98.79% 96.02%
Inception-

V2
30M 13.63 mins 97.91% 98.66% 96.63%

Table 4.2.: Performance comparison between VGG-16, ResNet-34, and Inception-V2
backbones.

Figure 4.1.: The loss curves of the U-net with VGG-16, ResNet-34, and Inception-V2.

In this section, the results of the incremental learning steps are presented and discussed.
Moreover, they are compared with results obtained using transfer learning as well as
results obtained from a standard batch learning model trained with samples from the
current and the previous datasets. In the first incremental step, the model structure
inherits that of the base model which was trained using the old dataset (D0

tr). The model
is retrained on (D1

tr) utilizing different distillation functions. Moreover, three values of
the distillation factor λ are tested which are [0.5, 1.0, 1.5], and constant learning rate
values of [1e-4 and 1e-5] are used. Each incremental step was given 30 epochs of training.
In table 4.4, the resulted scores of the highest-scoring models are reported. Using the
first distillation loss function while freezing the encoder achieved a fine performance
especially in maintaining the old knowledge presented in dataset (D0

ts). On the other
hand, the second and third loss function showed a worse performance in maintaining
the old knowledge; even though, they produced better scores on the new dataset (D1

ts).
Combining both L

′
D and L

′′
D and increasing the value of λ to 1.0, the model was able to

perform well on both datasets achieving almost the same scores as M0(D
{0,1}
tr ). This is

because increasing the value of λ leads to higher distillation loss value and thus gives the
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4. Experimental Results

Figure 4.2.: Qualitative comparison between the prediction performance of the U-net with
different backbones.

precision recall MIoU
Removing Aug 95.83% 95.74% 82.56%
Keeping NP 92.05% 99.72% 27.91%

EF 86.45% 99.35% 79.69%
Decaying LR 85.66% 98.79% 41.92%

Table 4.3.: Data processing functions and hyper-parameters tuning give a clear insight
about the performance of the U-net-Inception-v2 model.

model a stronger bias towards maintaining performance on old data.
Furthermore, model retraining utilizing the concept of transfer learning was performed.

The first base model, M0(D
0
tr) trained only on D0

tr, was retrained with D1
tr while freezing

the encoder. In table 4.4, the last row shows the evaluation of that model achieving low
scores on the old data, which is known as catastrophic forgetting. Since the concept of
transfer learning has proven to suffer from catastrophic forgetting already from the first
incremental training step, there was no need to do further training with the remaining
datasets.

base dataset(D0
ts) 1st new dataset(D1

ts)
M1 precision recall MIoU precision recall MIoU

L
′
D, EF 79.10% 98.70% 85.76% 93.70% 93.60% 86.86%
L

′′
D 84.65% 89.32% 77.04% 94.54% 97.26% 92.09%

L
′′′
D 66.03% 93.35% 64.40% 94.96% 94.81% 90.28%

L
′
D, L

′′
D 90.26% 96.68% 87.64% 92.74% 94.74% 88.20%

M0(D
{0,1}
tr ) 96.77% 94.52% 91.68% 96.93% 96.39% 93.54%

TL, EF 65.55% 86.30% 59.48% 92.25% 96.28% 89.00%

Table 4.4.: Performance measures of the segmentation model on previous datasets after
the first incremental step with different distillation criteria.

In the second incremental step, the model M1(L
′
D, L

′′
D) was retrained with dataset

(D2
ts) which shows the substrate before curing the glue; moreover, it has different lighting
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4.2. Gap Detection

conditions compared to (D1
ts). According to table 4.5, it is shown that using both

distillation loss functions L
′
D and L

′′
D produced better performance than the model in

which the encoder is frozen while utilizing only L
′
D distillation loss function. Similarly

in the last incremental step, the best model from the previous step is retrained with
dataset (D2

ts) which resolution is less than all the previous datasets. In table 4.6, scores
of the trained models are shown where the model with distillation loss functions L

′
D, L

′′
D

struggles in maintaining the knowledge of the previous datasets (D1
ts) and (D2

ts). On
the other hand, freezing the encoder and applying only the distillation loss function L

′
D

aided the model to overcome catastrophic forgetting; even though its performance on
the new dataset (D3

ts) is not the best. It is worth mentioning that using L
′′′
D was mostly

avoided due to high computational cost; in addition, the effect of that loss function on
the performance was very slight in most of the incremental steps. Moreover, the value
of the learning rate is decreased as more incremental steps are added which proved to
improve the models’ performance. This is because the more incremental steps the more
complex is the learning curve and consequently the learning rate value needs to be less to
not miss the global minima.

Following each incremental step, a model M0 was trained with samples from the current
and previous datasets to compare between incremental learning and normal batch learning.
The scores of the batch learning models M0 are shown in tables 4.4, 4.5, and 4.6 where in
the last incremental step for instance, the M0 model was trained with samples from all four
datasets (D

{0,3}
tr ). The incremental models achieved slightly lower evaluation scores than

the models M0, which was expected. However, from the qualitative results in figures 4.3
and 4.4 the deviations of incremental models predictions and M0 models predictions from
the GT are minor. Moreover, the batch learning based models have higher conputational
cost and training time since they use more data samples for training. Furthermore, the
fact that the incremental models achieve such performances without acessing the previous
datasets gives them more credibility, especially in the case where accessing old datasets
is not possible. The predicted gap masks generated by the incremental models can be
enhanced by applying morphological operations as presented in Appendix A.

According to the TINKER KPIs defined before, the base segmentation model meets
the target KPIs achieving a MIoU of 96.02%. As for the incremental models (M1,M2 and
M3), their scores were very close to the targeted KPIs; they achieved a MIoU of 87.92%,
90.32% and 88.36%, respectively over previous datasets.

base dataset(D0
ts) 1st new dataset(D1

ts) 2nd new dataset(D2
ts)

M2 precision recall MIoU precision recall MIoU precision recall MIoU
L

′
D, EF 84.90% 92.52% 79.79% 92.20% 96.07% 88.87% 94.84% 91.40% 87.11%

L
′
D, L

′′
D 93.48% 94.87% 89.07% 94.62% 97.11% 91.80% 96.48% 92.27% 90.10%

M0

(D
{0,2}
tr )

89.87% 96.81% 87.47% 95.55% 96.79% 92.25% 97.70% 94.51% 93.34%

Table 4.5.: Performance measures of the segmentation model on previous datasets after
the second incremental step with different distillation criteria.
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base dataset(D0
ts) 1st new dataset(D1

ts)
M3 precision recall MIoU precision recall MIoU

L
′
D, EF 90.01% 96.45% 87.20% 92.47% 94.66% 87.89%

L
′
D, L

′′
D 91.97% 96.19% 88.86% 86.66% 84.66% 74.91%

M0(D
{0,3}
tr ) 96.02% 92.50% 89.11% 97.19% 96.60% 93.68%

2nd new dataset(D2
ts) 3nd new dataset(D3

ts)
L

′
D, EF 94.77% 95.49% 90.72% 92.87% 87.26% 81.99%

L
′
D, L

′′
D 86.21% 87.66% 76.84% 94.46% 83.94% 80.20%

M0(D
{0,3}
tr ) 98.63% 94.33% 93.06% 96.34% 92.87% 89.84%

Table 4.6.: Performance measures of the segmentation model on previous datasets after
the final incremental step with different distillation criteria.

4.3. Depth Estimation Model

4.3.1. Base Model Selection and Training

Now that the gap mask is successfully extracted, it is used in the construction of the
gap image that is fed to the MDE model, since the gap location is the only part where
there is depth variations while the rest of the image is almost flat. As discussed in the
methodology section, there were several attempts and several architectures implemented.
The first implemented model was the CNN model shown in 3.5. Training the model took
very long due to the huge number of input data samples which was inevitable so that the
model reaches an acceptable performance. The model achieved the worst performance
scores as shown in table 4.7. The second implemented approach for solving the MDE
task was based on a U-net model with residual blocks applied to the encoder part of the
model as in 3.6. Using the residual blocks allowed the model to train faster and achieve
better performance; however, the convergence was not optimum and accuracy measure
δ < 1.25 was still low as shown in 4.7. In the third attempt, the U-net model used in the
segmentation task was used together with its pre-trained weights. The use of pre-trained
weights from the segmentation task allowed the model to converge faster building upon
the feature extraction knowledge it has learnt. As a result, the model produced better
prediction scores on unseen data samples than the previous models; yet the δ < 1.25
was not good as well. Both U-net models were trained with the berHu training loss
function presented in 3.6. Figure 4.5 shows a qualitative measure of the performance of
the developed MDE models.

In the last attempt, the same U-net model was used but with different training loss
function shown in 3.7. Using this loss function led to great improvement in the model
performance which is reflected by the higher accuracy measures and lower loss measures.
This is because the combined loss function takes advantage of its loss components; for
example, the SSIM index which takes in consideration many factors such as image textures
and edge information. The final MDE model which showed the best performance was
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4.3. Depth Estimation Model

Figure 4.3.: Qualitative results of the final incremental segmentation model M3 on testing
samples from all the four datasets D0

ts (a), D1
ts (b), D2

ts (c), and D3
ts (d).

trained with a much larger dataset that was provided later in the Tinker project. The
new depth measurements were much more accurate than the ones before; however, they
had less resolution. To fix this issue, the depth maps were up-scaled to double their
dimensions so as to match the dimensions of the old depth dataset. The model was
trained with up-scaled depth dataset, and then for model testing, they were reverted
to the original size. The last row of table 4.7 shows the scores of the model on unseen
partition of the new dataset. Figure 4.6 shows samples from the best model predictions
on the D1

t s dataset. Note that the figure shows the full monocular images; however, for
training the models, the gap contour was extracted using the gap mask as shown in 3.4.
From the figure, it is clear that the trained MDE model can perform well regardless of
the location of higher depth values due to the random flip augmentation function that
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Figure 4.4.: Qualitative results of the final incremental segmentation model M3 on testing
samples from all the four datasets D0

ts (a), D1
ts (b), D2

ts (c), and D3
ts (d).

was applied. However, the model performs less in the case of high rate of change of depth
values; for instance, the gap corners in the first row image of 4.6. If the rate of change
is more gradual and occurs over a longer segment of the gap, the model performs much
better; for instance, the gap bottom corners in the second row image of 4.6. Furthermore,
Figure 4.7 shows samples of the model predictions on the new large dataset. With the
larger dataset, the model was able to capture more information due to the big amount of
training sample and the diversity of depth distributions along the gap. In addition, it can
be noticed that the rate of change of depth values along the gap is not high, which is the
most probable in the cases of fluid distribution inside a cavity.
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Lower is better Higher is better
Method Abs Rel RMSE log10 δ < 1.25 δ < 1.252 δ < 1.253

CNN(MSE) 0.555 0.069 0.165 41.6% 69.6% 83.2%
ResUnet(berHu) 0.338 0.061 0.129 47.0% 77.1% 91.6%

Unet(berHu) 0.225 0.044 0.111 58.7% 84.1% 93.3%
Unet(compinedLoss) 0.192 0.040 0.082 70.0% 92.0% 97.5%
Unet(compinedLoss)
new large dataset 0.183 0.016 0.084 85.6% 92.3% 95.5%

Table 4.7.: Performance comparison between the different MDE models with different
loss functions.

Figure 4.5.: Comparison between the different MDE models developed throughout this
work before reaching the best model. Qualitative results show the progressive
improvement in prediction performance.

4.3.2. IL Implementation

Following the IL procedure discussed in section 3.4.3, the developed MDE model went
through one incremental training step. The 2D images of both datasets, D1 and D3,
are describing the same substrates but are different in terms of the recording setup, and
consequently they have different resolution and different features. Therefore, the GT
depth measurements in both datasets are actually the same. The dataset used for training
the base MDE model was D1

tr; Afterwards, D3
tr dataset, was used for the incremental

training of the base MDE model. The training was concluded in 45 epochs with a learning
rate of 5× 10−6 which decays linearly with a factor of 0.5 every 15 epochs. At the first
attempt, the encoder was frozen and the first distillation loss function L

′
MDED

represented
by equation (3.7) was used. In the second attempt, the loss functions, L′′

MDED
represented

by equation (3.6) and L
′
MDED

, were combined while retraining the whole model. In table
4.8, the performance after each attempt is reported where the scores are almost the same.
However, in the first attempt, the training was much faster since the encoder parameters
were not trainable. That is why the model utilizing L

′
D and EF was preferred. Figure

4.8 shows the qualitative performance of the incremental MDE model. Compared to
the performance of the base model, the performance of the incremental model is very
promising since it did not degrade much; the only noticeable degradation is in the accuracy
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Figure 4.6.: Qualitative results of the best MDE model on samples from the D1
t s dataset.

measure δ < 1.25. From table 4.7, it is observed that the value of the accuracy measure
δ < 1.25 of the first four models is relatively low when compared to the other accuracy
measures. This is due to the low amount of data samples. On the other hand, when a
larger dataset was provided, the model achieved relatively higher accuracy values.

Lower is better Higher is better
Method AbsRel RMSE log10 δ < 1.25 δ < 1.252 δ < 1.253

L
′
D, EF (D1

t s) 0.222 0.045 0.097 61.4% 88.9% 96.5%
L

′
D, EF (D3

t s) 0.234 0.056 0.102 58.7% 86.2% 96.1%
L

′
D, L

′′
D (D1

t s) 0.212 0.043 0.094 63.7% 89.6% 96.6%
L

′
D, L

′′
D (D3

t s) 0.236 0.055 0.103 57.6% 86.2% 96.0%

Table 4.8.: Performance measures of the MDE model on the two datasets after applying
an incremental step with two different distillation criteria.

The performance of the base MDE model trained on the larger dataset shows so much
improvement and the AbsRel score comes very close to the TINKER KPIs for depth
estimation. For the incremental MDE model, the mean AbsRel score is a bit high relative
to the KPIs; and thus there is still room for improvement, given the availability of a bit
larger datasets.
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Figure 4.7.: Qualitative results of the best MDE model on samples from the new large
dataset.

Figure 4.8.: Qualitative results of the incremental MDE model on samples from D1
t s and

D3
t s datasets.
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5. Conclusions

To sum up, the work in this thesis was done as part of TINKER, an EU funded H2020
project. One of the goals in TINKER is to push forward the inline defect repair feedback
loops depending on robust error compensation Machine Learning (ML) based algorithms.
To be able to compute corrective actions, these ML algorithms are trained to model the
relation between the input process parameters and the corresponding process measure-
ments. The thesis targets one fabrication process which is the placement of a microchip
inside a PCB cavity filled with non-conductive adhesive. The developed system in this
thesis uses the recorded images of the microchips in cavities, i.e. substrates as well as the
substrates’ depth maps for training, and provides an estimation of the missing glue in the
gap between the chip and the boundaries of the cavity. Maintaining uniform height of the
glue inside this gap is targeted in order to have a planar surface at the end of the current
process to be able to initiate further processes. For estimating the depth inside the gap,
two models were developed; first, a segmentation model to detect the gap shape and
location; second, a MDE regression model. Using the estimated depth map, the missing
glue is printed in the gap by an inkjet printer.

Moreover, The thesis utilizes an incremental learning scheme to overcome the need
for generating a huge amount of data whenever changes in the fabrication process or
developments of the inspection system occur. Since there are many partner companies
participating in TINKER, where each inspection system has different recording conditions,
the developed algorithms should be able to fit different datasets. Moreover, since the
pilot line of the fabrication process is delocalized, the process data had to be provided
in batches based on materials availability. With those points in mind, the incremental
learning scheme was implemented to give a model the ability to incrementally learn new
information without catastrophically forgetting those previously learnt. Using incremental
learning, an initial DL model is trained with a small amount of data, and then the rest of
the datasets are provided to the model incrementally. The main key features of applying
incremental learning are the following: learning with forgetting, never accessing the older
datasets, and avoiding model expansion. The incremental learning scheme was applied to
both gap segmentation and MDE models and achieved very promising results showing
the ability to adapt to process changes which are reflected in changes of images’ features
such as brightness and contrast levels.

The performance of the incrementally trained MDE model could have been better if
the datasets were a bit larger. That is why it can be said that the small amount of 3D
depth data is one of the limitations of this work. One of the observed constraints of
applying incremental learning on the MDE task was that the range of depth values in the
depth maps should be similar across different datasets. If that is not the case, modelling
the relation between 2D images, ranging always from {0 − 255}, and corresponding
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5. Conclusions

depth maps with fluctuating ranges becomes more difficult. Therefore, applying a second
incremental training step using the latest large dataset was not successful. For future
improvements, the same methodology could be tested with larger datasets, especially
for the MDE model. A more robust depth metrology providing more than just depth
maps; for instance scale information, would be much helpful as well. Further incremental
learning criteria could be also added to improve the ability of the models to retain the old
knowledge. Overcoming such limitations and applying some of these future improvements
was not simple in the time of the thesis due to time and inspection metrology limitations.
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A. Appendix

Figure A.1.: Qualitative results of the segmentation model predictions after the first
incremental step M1 against predictions of the batch learning based model
M0. Both were tested on samples from datasets D0

ts (a,b) and D1
ts (c,d).
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A. Appendix

Figure A.2.: Qualitative results of the segmentation model predictions after the second
incremental step M2 against predictions of the batch learning based model
M0. Both were tested on samples from datasets D0

ts (a,d), D1
ts (b,e) and D2

ts

(c,f).52



Figure A.3.: Qualitative results of applying open and close morphological operations on
predicted masks.
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