

pvnanocell

Complete Additive Manufacturing Solution for Mass-Production Printed Electronics

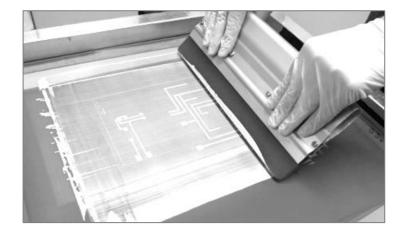
Hanan Markovich PV Nano Cell

December 7th, 2021

Current Massive Wave: Electronics Everywhere

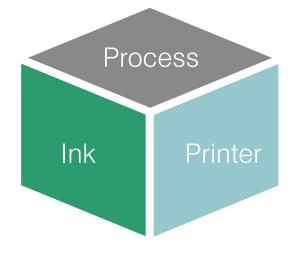
Enabled By Our Digital Additive Printing Technology!

Solar Cells

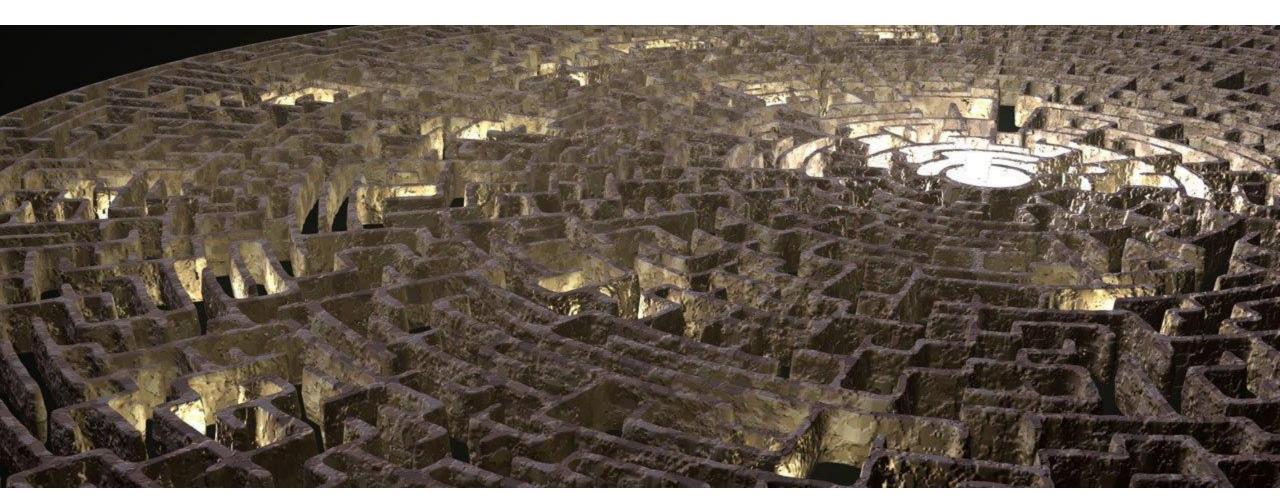


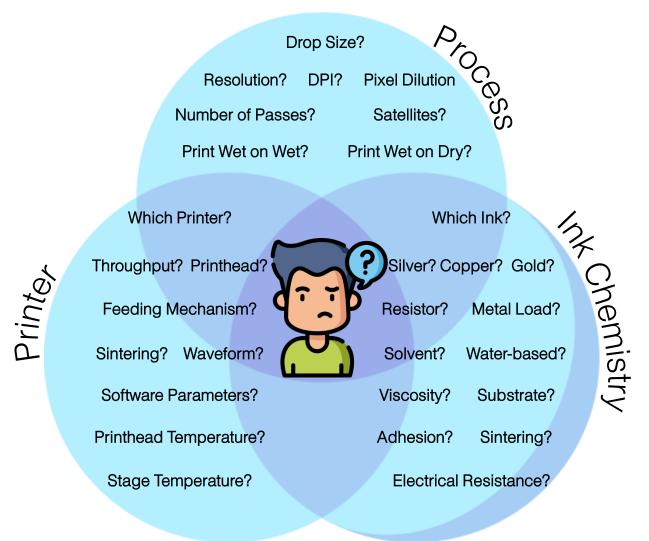
December 2021 ©pvnanocell

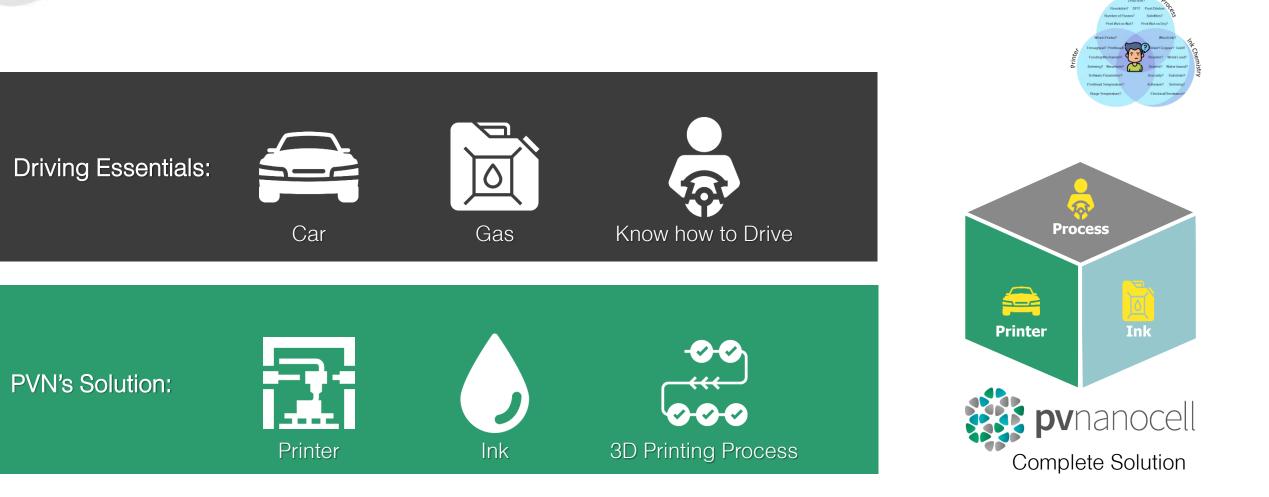
Flexible Electronics


Medical Devices

Digital Conductive Printing for Mass Production


Replacing ~110 year old Analog Printing




Current Digital Printed Electronics is Complicated!

Customer needs a PhD in Printed Electronics

PVN's Complete Solution Makes it as Easy as Driving

PV Nano Cell's Offering: 3D Technology

Families of SicrysTM – Single Crystal Nano Inks

High metal load, over 60%
Stability: Shelf life – over 12 months
Low sintering temperature (< 130 °C).
Low resistivity: ρ < 2.5 x bulk.

- Narrow pattern printing as narrow as 50 μm.
- Lower viscosity at high metal loading (50%+).
- Green & clean process, no hazardous material.
- SMT/soldering-capable.

Sicrys[™] Digital Silver Inks: Technical Characteristics

Ink properties	120DM-206	140DM-106	I50DM-106	I50TM-115	I50TM-119	I50T-13	130EG-1	I60PM-116
Metal Loading (% w/w)	20%	40%	50%	50%	50%	50%	30%	60%
Main Solvent ¹	DGME	DGME	DGME	TGME	TGME	TPM	EG	PM/DGME
Typical Viscosity @ 25°C (cP)	5	11	20	37	34	26	28	26
Surface Tension (dyn/cm) (Pendant Drop method)	34	34	34	36	29	26	47	23
Open Time ² (jetting temperature,°C)	15 min <mark>(</mark> 25°C)	10 min (30°C)	10 min (30°C)	30 min (40°C)	10 min (35°C)	60 min (35°C)	5 min (35°C)	
Resistivity (μΩcm) (thermal sintering,°C, min)	≤ 10 (150,30) ≤ 12 (130,30)	≤ 10 (150,30) ≤ 12 (130,30)	≤ 10 (150,30) ≤ 12 (130,30)	≤ 10 (150,30) ≤ 12 (130,30)	≤ 10 (150,30) ≤ 12 (130,30)	≤ 10 (200,30) ≤ 24 (150,30)	≤ 10 (180,30) ≤ 14 (150,30)	≤ 10 (130,60)
Sheet Resistance (m Ω/\Box) (thickness, μ m)	10 (10 μm)	10 (10 μm)	10 (10 μm)	100 (1 μm) 20 (4 μm)	30 (3.5 μm) 15 (8 μm)	100 (1 μm) 25 (4 μm)	100 (1 μm) 25 (4 μm)	
Substrate Adhesion ³ (tested) ⁴	ITO, Glass	ITO, Glass	ITO, Glass	ITO, Glass, PET, PC	Kapton [®] , FR4, PET, PC, ITO, Glass, CTO	PC, PEN, PET	Kapton [®] , PC, PEN, LCP, Glass	Kapton®, PC, PA, PC/ABS, Glass
Compatible Printing Technologies	Inkjet	Inkjet	Inkjet	Inkjet	Inkjet	Inkjet	Inkjet, Aerosol	Aerosol
Compatible Printheads (tested) ⁴	Epson DemonJet Desktop printers	KM1024 KM1024i Ricoh E3 DMC-11610 Samba	KM1024 KM1024i Ricoh E3 DMC-11610 SapphireQS-10pl	KM1024 KM1024i KM512 Ricoh E3 SapphireQS-10pl	KM1024 KM1024i Ricoh E3	KM1024 KM1024i Ricoh E3 DMC-11610 SapphireQS-10pl	KM1024 KM1024i Ricoh E3 DMC-11610 Aerosol	Aerosol (pneumatic) atomizer)

Shelf life: 12 months. Storage at room temperature. No need to stir the inks.

¹ - Solvents: DGME - diethylene glycol methyl ether, TGME - triethylene glycol methyl ether, PM - propylene glycol methyl ether, EG - ethylene glycol, TPM - tripropylene glycol methyl ether

² - Ricoh E3 printhead

³ - Adhesion depends on substrate, sintering conditions, substrate pretreatment and pattern thickness (tested according to ASTM-3359-09 or ISO-2409)

⁴ - Substrates and printheads listed here were tested and perform well. Other substrates and compatible printheads may also be applicable.

SicrysTM Digital Silver Inks: Technical Characteristics

Ink properties	I50TM-119
Metal Loading (% w/w)	50%
Main Solvent ¹	TGME
Typical Viscosity @ 25°C (cP)	34

SicrysTM Digital Silver Inks: Technical Characteristics

Ink properties	I50TM-119
Resistivity (μΩcm)	≤ 10 (150,30)
(thermal sintering,°C, min)	≤ 12 (130,30)
Substrate Adhesion ³	Kapton [®] , FR4, PET,
(tested) ⁴	PC, ITO, Glass, CTO
Compatible Printing Technologies	Inkjet
	KM1024
Compatible Printheads	KM1024i
(tested) ⁴	Ricoh E3

SicrysTM Digital Copper Inks: Technical Characteristics

Ink properties	IC25EG-1	IC40DM-7	IC50DM-7	IC50TM-8
Metal Loading (% w/w)	20%	40%	50%	50%
Main Solvent ¹	EG	DGME	DGME	TGME
Cu oxide in Cu nano-particles	< 10%	< 5%	< 5%	< 5%
Typical Viscosity @ 25°C (cP)	32	16	20	32
Surface Tension (dyn/cm) (Pendant Drop method)	47	28	28	30
Open Time ² (jetting temperature,°C)	5 min (35°C)	1.5 min (35°C)	1.5 min (35°C)	20 min (40°C)
Resistivity (μΩcm) - Laser sintering (Photonic sintering)	≤ 5 (≤ 32)	≤ 5	≤5	≤ 5
Resistivity (μΩcm) - Thermal sintering (°C, min, Argon)	≤ 90 (300, 30,Ar)	≤ 120 (300, 30, Ar)	≤ 120 (300, 30, Ar)	≤ 120 (300, 30, Ar)
Substrate Adhesion ³ (tested) ⁴	Kapton [®] , PA, LCP, Glass	Kapton [®] , FR4, ITO, Glass	Kapton [®] , FR4, ITO, Glass	Kapton [®] , FR4, ITO, Glass
Compatible Printing Technologies	Inkjet Aerosol	Inkjet	Inkjet Aerosol	Inkjet
Compatible Printheads ⁴	KM1024 KM1024i Ricoh E3 Aerosol	KM1024 KM1024i Ricoh E3 DMC-11610	KM1024 KM1024i Ricoh E3 Aerosol	KM1024 KM1024i Ricoh E3
Shelf life: 12 months. Storage at room temperature of time (minutes), refill the bottle with Argon every ¹ - Solvents: EG - ethylene glycol, DGME - diethylene ² - Ricoh E3 printhead	time the bottle is oper	ed.		air for short periods
 ³ - Adhesion depends on substrate, sintering conditions, substrate pretreatment and pattern thickness (tested according to ASTM-3359-09 or ISO-2409) ⁴ - Substrates and printheads listed here were tested and perform well. Other substrates and compatible printheads may also be applicable. 				

⁴ - Substrates and printheads listed here were tested and perform well. Other substrates and compatible printheads may also be applicable

SicrysTM Digital Copper Inks: Technical Characteristics

Ink properties	IC25EG-1
Resistivity (μΩcm) - Laser sintering (Photonic sintering)	≤ 5 (≤ 32)
Resistivity (μΩcm) - Thermal sintering (°C, min, Argon)	≤ 90 (300, 30,Ar)
Substrate Adhesion ³ (tested) ⁴	Kapton [®] , PA, LCP, Glass
Compatible Printing Technologies	Inkjet Aerosol
Compatible Printheads ⁴	KM1024 KM1024i Ricoh E3 Aerosol

Sicrys[™] Gold, Dielectric and Resistor Inks: Technical Characteristics

SiCrys[™] Product Data Sheet Product Catalog Number: <u>Sicrys[™] IAu20W-1</u>

General Information

Sicrys™ IAu20W-1 is a gold nanoparticle water-based conductive ink for digital inkjet and aerosol printing. The ink offers low viscosity, reliable jetting and good printability. Storage at ambient conditions

Ink Properties

Properties	Typical Values
Metal Loading, Au (w/w)	20 %
Particle Size (Lumisizer®)	d50 = 75 nm, d90 = 130 nm
Viscosity (Brookfield, Cone Spindle 40, 25°C)	9 cP
Surface Tension (Pendant Drop Method)	38 dyn/cm

Electrical and Adhesion Properties

Sintering Conditions (Substrate)	Resistivity (4PP)	Sheet Resistance (Layer Thickness)
Thermal Sintering: 200°C/60min (Glass)	≤40 µΩ cm (≤16 bulk)	0.5 Ω/¤ (1µm)
Photonic Sintering: Xenon Lamp (PET)	≤35 µΩ·cm (≤14 bulk)	1 Ω/¤ (0.5 μm)
Adhesion to (tested):	Glass, PET	
(ASTM 3359-09 or ISO-2409)		

Compatible Printheads

Ink works well, among others, with printheads: DMC-11610, Epson

Product Applications

Digital Printing (Inkjet, Aerosol), Printed Electronics

SiCrys Product Data Sheet Sicrys Dielectric Inks DPI-50TP-2, DPI-50P-3

General Information

Sicrys™ DPI (Dielectric Polyimide) inks are a new family of inks designed for Inkiet and Aerosol digital printing. After Thermal or UV curing, DPI inks form a polyimide layer with dielectric properties suitable to print electronics, such as embedded passive components, insulators, and other, on a variety of substrates. These inks are in advanced development stage.

Ink Properties

Properties	Typical	Values
	DPI-50TP-2	DPI-50P-3
Active Material (w/w)	50 %	50 %
Solvent*	TPM:PMA	PMA
Viscosity (Brookfield)	21 cP (25°C)	12 cP (25°C)
Specific Gravity	0.98 g/ml	0.98 g/ml
Color	Yello	wish
Surface Tension (Pendant Drop Method)	29 dyn/cm	28 dyn/cm
Shelf Life	9 month	is at 5°C

Printed Pattern Properties

Electrical Properties		Thermal Properties	
Dielectric Constant	3.2 ± 0.2 @1kHz	Thermal Decomposition Temperature (T5%)	400°C
Dielectric Strength	70 kV/mm (1750 V/mil)	Thermal Conductivity	0.14 W/mK
Breakdown Voltage	9.1 kV (at 130 µm thick)		
Mechanical Properties	;	Outgassing properties (ASTM E595)	
Flexural Strength	35±5 MPa	Total Mass Loss (TML):	0.241 %
Flexural Modulus	630±10 MPa	(Criteria for space qualification TML ≤ 1%)	
		Collected Volatile Condensable Material (CVCM)	0.008 %
		(Criteria for space qualification CVCM \leq 0.1%)	
		Water Vapor Regain (WVR)	0.19 %
		from RT to 150°C and hold at 150°C for 30min; heat from	150°C to

Sicrys[™] **Product Data Sheet** Product Catalog Number: <u>Sicrys[™] RI-6DM-3</u>

General Information

Sicrys™ RI-6DM-3, a resistive ink based on carbon black nanoparticles in diethylene glycol monomethyl ether (DGME), designed for digital Inkjet printing, for use with printheads that require low viscosity inks, such as Epson printheads. The ink offers low viscosity, robust jetting, good printability and storage at ambient conditions. This ink can be used to print embedded resistors.

Ink Properties

ink Properties	
Properties	Typical Values
Solid (w/w)	6 %
Carbon Black (w/w)	3 %
Particle Size (Lumisizer®)	d50 = 66 nm, d90 = 110 nm
Specific Gravity	1.05 g/ml
Viscosity (Brookfield, Cone Spindle 40, 25°C)	6 cP
Surface Tension (Pendant Drop Method)	34 dyn/cm
Shelf Life	9 months at 25°C

Electrical Properties

Substrate	Sintering Profile	Resistivity (4PP)
Glass	150°C / 60 min	~ 0.6 Ω·cm
Glass	240°C / 60 min	~ 0.3 Ω·cm

Compatible printheads[#]

Ink works well, among others, with printheads: Epson

Product Applications

Digital Printing (Inkjet), Printed Electronics, Embedded Resistors

*- Printheads listed here were tested and perform well. Other compatible printheads may also be applicable

Product Catalog Number: Sicrys™ RI-20DM-1

General Information

Sicrys™ RI-20DM-1, a resistive ink based on carbon black nanoparticles in diethylene glycol monomethyl ether (DGME), designed for digital Inkjet printing. The ink offers low viscosity, robust jetting, good printability and storage at ambient conditions. This ink can be used to print embedded resistors.

Ink Properties

Properties	Typical Values
Solid (w/w)	20 %
Carbon Black (w/w)	10 %
Particle Size (Lumisizer®)	d50 = 66 nm, d90 = 110 nm
Specific Gravity	1.06 g/ml
Viscosity (Brookfield, Cone Spindle 40)	25 cP (25°C) 22 cP (30°C) 20 cP (35°C) 18 cP (40°C)
Surface Tension (Pendant Drop Method)	34 dyn/cm
Shelf Life	9 months at 25°C

Electrical Properties

Substrate	Sintering Profile	Resistivity (4PP)
Glass	150°C / 60 min	~ 0.6 Ω·cm
Glass	240°C / 60 min	~ 0.3 Ω-cm

Compatible printheads*

Ink works well, among others, with printheads: Ricoh E3

Product Applications

Digital Printing (Inkiet) Printed Electronics Embedded Resistors

*- Printheads listed here were tested and perform well. Other compatible printheads may also be applicable

DemonJet: R&D and Low Volume Manufacturing Printer

pecifications		
Distance weather d		
Printing method	Epson Micro Piezo [™] TFP print head	
Resolution	360 x 360 dpi and up to 2880 x 1440 dpi	
Minimum droplet size	3.5 pL	
# of inks per printing session	Up to 10	
# of nozzles	360 x 10 channels	
Maximum substrate size	440 x 640 mm (17.3" x25.2")	
Printed size	up to 427 x 635 mm (16.8" x 25")	
Speed	14 minutes - full plate (1.1 sqm/h 1,705 sq. in./H)	
Position accuracy	Maximum: ±5 μm	
Position accuracy	Average: ±2.1 µm	
Repeatability	Standard deviation, 1σ: ±2.1 μm	
	Maximum: ±6 µm	
Size accuracy	Average: ±2.1 µm	
Supported substrate thickness*	Maximum 3.7 mm / 0.145"	
Substrate materials**	PET, ITO, Glass, PI, Other	
Dryer	IR lamp	
Sintering	IR lamp	
Power	220-240 VAC 50Hz + Ground. Line circuit breaker 16 Amp. (for 220 Volt countries) 110-120 VAV 60/Hz + ground. Line circuit breaker 20 Amp. (for 110 Volt countries)	
Size	180 cm x 118 cm x 108 cm (L x H x W) / 70.8" x 46.4" x 42.5"	
Weight	450 Kg / 992 lb	

High Throughput Up to 1000's of Parts per Hour

Up to 10 Inks

per Printing Session

Camera-based Registration Software Automation

Accuracy: ±2.1 μm (average) Printed Size: 427 mm x 365 mm Printing Speed: 14 Minutes (full plate)

Focus: Mass-Production Markets

Automotive

Solar

Embedded Passive Components

Automotive Market: Project Tinker

Samples prepared for Forth, Laser Sintering: (~100µm & ~300µm width, 1-7.5µm thickness)

@PVN: Cu on FR4 feasibility with Green laser: Gaussian beam, 5mm/s, 0.7W (~150µm width, 4-7µm thickness)

	Line	Resistance (Ω)	Width (µm)	Avg. H (µm)	Resistivity (μ Ω cm)	Resistivity (xBulk)
Ę	5F-A1	0.237	123	6.5	7.5	4.4
Ę	5F-B1	0.240	161	4.6	7.1	4.2
5	5F-C1	0.220	154	4.3	5.8	3.4
5	5F-D1	0.230	157	4.2	6.1	3.6

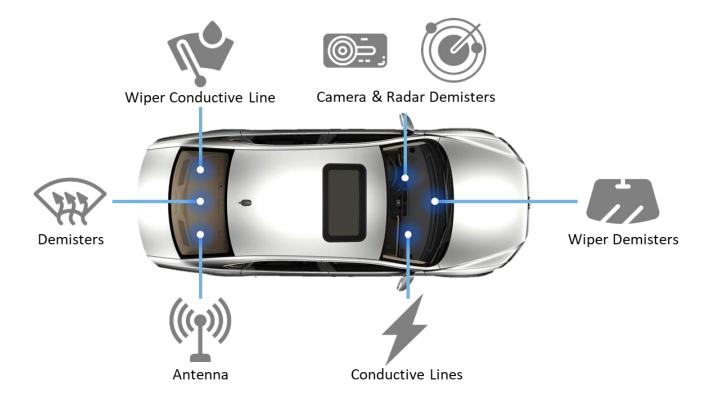
ו	
•	
c	
o	
(5F) ×8	

Automotive Glass

Silver per Window [gr] [#]	New Cars Annually	Silver [Ton]	Ink [Ton]
5	76,000,000	380	760

3 grams (rear defroster) + 2 grams (front defroster & other electronics). * High volumes of inks.

Commercial Applications: Automotive Market

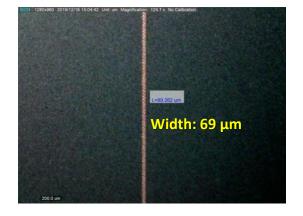

Windshields are filled with Electronics

- Multi inks printed using one printer.
- Narrow & dense electronics.
- Large format
- Each windshield is different.

- Bus Bars Resistivity: 1.5 m Ω/\Box
- Fine Lines Width < 0.6 mm
- Fine Lines Resistivity: 2.0 m Ω/\Box

Solar Market

Type of Cell	<u>Silver per Gwp</u> [Ton]	<u>Gwp in 2020</u>	Annual Silver [Ton]	Annual Ink [Ton]
Thin Film, OPV & HJT*	12.9	20.3	261	521
Silicon	11.3	114.7	1,291	2,582

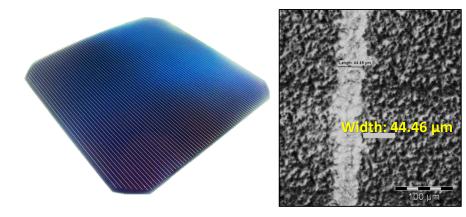

* Temperature-sensitive cells. # Future high-volume quantities

Revolutionizing Solar Cells Performance

5 to 6 times better conductivity at low sintering temp. enables narrower fingers.

Inkjet-print finger width of 35 to 45 μm and Aerosol print as narrow as 20 μm

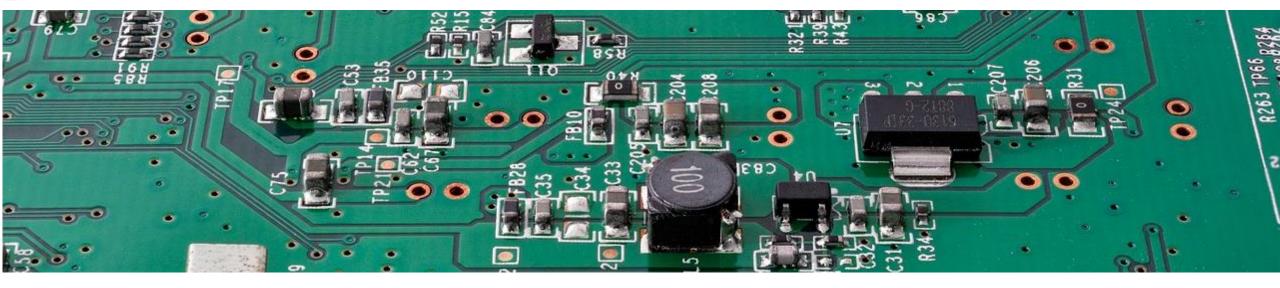
Inkjet: a contactless printing technology. enables use of thinner wafers.



SicrysTM Silver inks inkjet-printed on IZO, ITO, etc. Width = ~70 μ m, Thickness = ~4 μ m. Resistivity =~6 μ ocm. Sintered at 200 °C. Industrial Thin Film cells.

Reduce amount of silver by a factor of 3 to 5 when sintering low temperatures

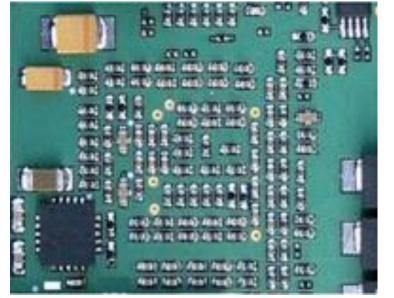
Wicith: 22 µm


SicrysTM Silver ink Aerosol-printed on glass. Width =22 μm, Thickness = 2 μm, Resistivity = 1.16x10-7 Ωm at @ 200 °C for 1 hr

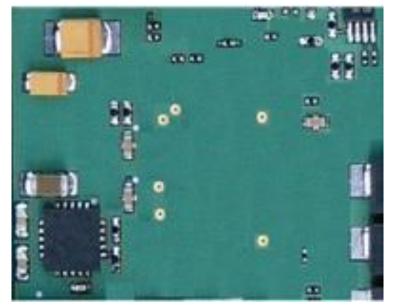
SicrysTM Silver ink with Glass Frits Inkjet-printed Width = $45 \div 50 \ \mu\text{m}$. Thickness = $\sim 4 \ \mu\text{m}$. Resistivity < 2 $\mu \Omega$ cm. Firing at up to 750°C. Crystalline Silicon Cell.

Inkjet is contactless printing technology enabling usage of thinner wafers. 3 to 4 pL print heads will enable printing narrower patterns.

Target Market #3: Embedded Passive Components >>\$B



- Improved Performance
- Flexible Electronics
- Thinner Electronics
- Improved Reliability
- Clean technology.


Value Proposition

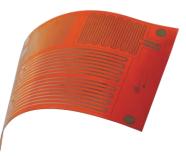
Source 1 Source 2

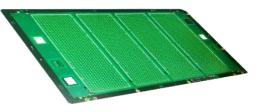
Upcoming Revolution: Embedded Passive Components (EPC)


Surface Mount

Embedded

Source: PRINTED CIRCUIT DESIGN & FAB

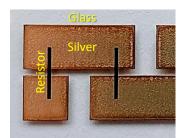

PVN Is Ready With Its Embedded Passive Technology


Commercial Applications & Markets Served

Automotive Windshields

Flexible Antenna

4-Layer PCB


Solar Cell Fingers & Busbars

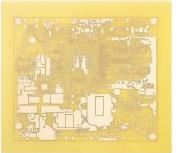
Flexible Heater

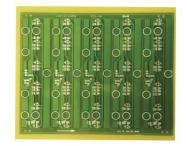
Medical Sensor on Paper

Embedded Printed Resistor

Embedded Printed Capacitor

Phone Antenna


Coil with 18 Turns


Special Heater

Electronic Insole

Printed Circuit Board on FR4

1-Layer PCB

רשות החדשנות
 L > Israel Innovation
 Authority

eurostars"

Prestigious Development Projects (Funded Consortiums)

Our engineers are involved in an array of projects around the world with <u>leading</u> research centers, companies, universities and more to bring the technologies of the next century

Horizon 2020

European Union Funding

for Research & Innovation

Digital manufacturing of LIDAR & RADAR sensors

Flexible electronics, LIFT technology

Solar cells, very narrow metallization

December 2021 ©pvnanocell

26

Intellectual Property

Sicrys[™] Patents Granted:

USA	US	9,556,350 & 10,166,602
Russia	RU	2593311 & 2730285
China	CN	103282969
Japan	JP	6067573 & JP 6363138
Europe	ΕP	2649621 (Germany, Netherlands, UK, France)
Europe	EP	3113897 (Germany, Netherlands, UK, France, Finland, Ireland)
Israel	IL	226665
India	IN	324986
Korea	KR	10-1932781
Brazil	BR	11 2013 013885-8 A2

Copper WO PCT/1B2015/051536 (WO2015132719) National phase. Silver WO PCT/US2011/063459 (WO2012078590) National phase.

Additional Patents:

PVnanocell joint patent with TAU: IP Nano wires for thin solar cells metallization: WO 2013/128458 US 9,373,515 B2 Conductive Nanowires Films.
PV Nano Cell IP General (Sono chemistry – nano materials – owned by subsidiary NZE): USA 7,157,058; USA 7,504,075; IL 144638; IL 149932. Main Claims: Single Crystal Nano Particles Dispersions & Inks

Strong Article Patents, Single Crystals can be Policed

DigiFlex Patents:

Process for Producing a Photomask on a Photopolymeric Surface: USA 9,513,551 and 12 countries.

Process for Dry-coating of Flexographic Surfaces: USA 9,352,544

PV Nano Cell 8 Hamasger st. P.O. Box 236 Migdal Ha'Emek 2310102 Israel

hanan@pvnanocell.com www.pvnanocell.com

This presentation contains forward-looking statements. All statements other than statements of historical fact contained in this presentation are forward-looking statements. In some cases, you can identify forward-looking statements by words such as "believe," "continue," "estimate," "anticipate," "expect," "intend," "plan," "potential," "project," "seek," and "will," as well as the negative of these words or other comparable terminology. These forward-looking statements include, but are not limited to, statements about: the potential market opportunities for commercializing our current and planned products; our expectations regarding the potential market size for our current and planned products; estimates of our expenses, future revenue, capital requirements, and our needs for additional financing; our ability to develop and advance our current and planned products; the implementation of our business model and strategic plans for our business and products; our ability to maintain and establish collaborations or obtain additional funding; our financial performance; and developments and projections relating to our competitors and our industry. These statements reflect our current views with respect to future events or to our future financial performance and involve known and unknown risks, uncertainties, and other factors that may cause our actual results, performance, or achievements to be materially different from any future results, performance, or achievements expressed or implied by these forward-looking statements. Factors that may cause actual results to differ materially from current expectations include, among other things, those listed under "Risk Factors" in the Registration Statement on form F-1 filed with the U.S. Securities and Exchange Commission and effective as of October 5th 2019 by the Company and the 20F forms filed in May 2019. Given these uncertainties, you should not place undue reliance on these forward-looking statements. Except as required by law, we assume no obligation to update or revise these forward-looking statements for any reason, even if new information becomes available in the future.

Safe Harbor

December 2021 ©pvnanocell

29