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Abstract—We present a vision system for automatic calculation
of inkjet printed electronic structures. By adapting the printed
structures to individual parts, the system is able to correct
misalignments and deviations from previous process steps simply
by adjusting the printed image. We propose a vision system
that acquires high-resolution images after the pick & place step.
A deep neural network is used to read this information and
output a suitable print image for the subsequent step of inkjet
printing. We evaluate the vision system in a set of experiments.
The system reaches an intersection over union (IoU) of 82%
on our data set. This shows the potential for future zero-defect
additive manufacturing in electronics industry.

Index Terms—inkjet printed electronics, deep learning

I. INTRODUCTION

Inkjet printing is an interesting additive manufacturing
technique that has a high potential in the field of electronics
production. While it is not (yet) possible to print complete
electronic devices, inkjet printing supports adaptive assembly
and integration of individual electronic components.

In this work we propose a system that uses optical inspec-
tion to automatically infer image masks via inline inspection.
These masks serve as an important basis to steer subsequent
inkjet printing processes. In a larger context, the interplay
between inline inspection to adaptive inkjet-printing has the
potential to introduce real zero-defect manufacturing in elec-
tronics production. The background for the present work is
manufacturing of RADAR and LiDAR electronic sensors as
used for advanced driver-assistance systems and autonomous
driving.

In the proposed approach, a printed circuit board (PCB) is
manufactured with a cavity intended to enclose a bare die.
The cavity is filled with glue and the bare die is picked from
a wafer and placed into the cavity. Since the bare dies are
slightly smaller than the cavity, this results in small gaps
between the bare die and the border of the cavity. The long-
term goal is to perform contacting of the chip via inkjet printed
conductive paths. Therefore, it is important to fill the gap with
isolating material first. The vision system presented in this
work addresses this gap-filling task.
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Fig. 1. Overview about the adaptive gap-filling process: Image acquisition
(a), gap detection via neural network (b, c), and printing of calculated mask
image (d).

Figure 1 illustrates the complete process of inspection and
adaptive gap-filling. An image from top view is acquired via
inline inspection. The image is fed to a neural network that
outputs a segmentation of the gap around the bare die. The
output image is then used as a mask that is inkjet-printed with
isolating material to fill the gap. In this work, we focus on a
method for mask calculation based on deep neural networks.

II. RELATED WORK

Automated optical inspection is commonly used in industry
for quality control of electronic devices. It is typically im-
plemented with a system consisting of one or more machine
vision cameras and several light sources. The systems mostly
rely on reference comparison approaches. The recorded data is
fed to a specifically trained algorithm that can detect flaws or
defects on the surface of the test object by comparing it to its
ideal form [1]. Extensive research has been done in applying
such systems for detecting different errors on PCBs [2].

Vision systems have also been used to check bare dies
using reference comparison algorithms [3]. Furthermore, a
framework for the inspection of the attachment of the bare
die to the PCB in regards to excess of insufficient glue was
proposed [4]. In this work, pixel-based vectors for all regions



of interest are created. Different machine learning algorithms
for classification are investigated in order to classify regions
as faulty if there was excess or insufficient glue. The best
results were achieved using support vector machines [4]. In
general, support vector machines have shown great potential
for industrial applications in regards to classification [5], [6].
However, in many image recognition tasks it has been shown
that deep learning approaches are more powerful, as they
do not need as much data pre-processing and are able to
generalise better [7]. Implementation of these approaches is
mostly prevented by the enormous amount of data necessary
to train these networks.

To bypass this problem [8] suggest using transfer learning
and fine-tuning to adapt the deep learning network to the
respective circumstances. They used a source network trained
on the ImageNet 2012 dataset and performed transfer learning
and one epoch of fine-tuning on an industrial optical inspection
dataset provided by DAGM They receive an outstanding
classification accuracy of 99.95%. The aim was to detect,
whether the sample had defects or not and to classify the
samples to one of six patterns resulting in a total of 12 classes.
With 6,900 labeled images, the DAGM dataset still consists
of a large amount of data which can be difficult to obtain in
an industrial environment. However, what this study shows is
that a network does not have to be trained from scratch on
the target data in order to perform well. This can be used
as an advantage when developing machine learning tools for
production.

Inkjet printing is an additive manufacturing technique suit-
able for manufacturing in the micro- and nano-scale. Additive
manufacturing has gained on popularity in recent years due
to advantages like waste reduction and the large variety of
applicable materials. This enables the application of additive
manufacturing in many different sectors like the aerospace
industry, the biomedical sector, or the electronics industry [9].

Inkjet technology is used to accurately generate free-flying
fluid droplets and deposit them in precise locations on a
substrate. While being the leading printer technology for
graphical printing in the home and small office markets, inkjet
technology has also shown increasing potential in the field of
micro-scale manufacturing [10]. Several features make inkjet
printing well suited for manufacturing, especially in the field
of printed electronics. Inkjet printing is a digital process and
can therefore be easily adjusted in real time. This allows each
product in a sequence to be made differently, even to just adapt
to misalignment of the product. Its digital nature also has a
cost advantage compared to methods that require a physical
mask or template. For inkjet printing the pattern to be printed
is completely digital [11].

Another advantage is that inkjet printing is a non-contact
method which enables accurate processing of fragile or non-
planar substrates. Furthermore, inkjet printing enables the use
of a wide range of materials, spanning from metals, ceramics,
and polymers to biological materials like living cells. The
main aspect is, that the substance must be fluid. Finally, inkjet
printing is modular and scalable. Mutliple print-heads can be

used simultaneously and their position varied. Two print-heads
can be placed side-by-side resulting in a wider pattern or in a
row in order to layer different materials. The latter is known
from graphical inkjet printers for the home and small office
sector, where often up to four colors are used [11].

There are several possible process routes that can be taken to
employ inkjet printing for manufacturing. The most common
technique is direct material printing. The droplets for the inkjet
printing are generated by the flow of the liquid ink through a
nozzle with a small opening and is formed by surface tension.
The drop generation method ”drop-on-demand” where the ink
is emitted through short jets and only forms drops when
required, can achieve drop diameters lying between 10 and
100µm [11].

One of the main limitations of inkjet printing is that the
feasible resolution depends on both the size of the final printed
drop after its solidification, drying or curing, and the precise
placement on the substrate. The latter is influenced by the
movement accuracy of the print head or the substrate. The
falling movement of the droplets also plays a role here, which
is influenced by the aerodynamic and electrostatic properties
of the droplet. These properties in turn depend on other factors.
This limits the smallest feasible feature size to approximately
10µm when using direct material deposition [11].

In order to deploy machine vision methods for online-
monitoring and adaptation of inkjet printing processes, the
use of deep neural network is promising. The machine vision
problem to be solved for gap detection essentially is segmantic
segmentation. While neural networks for pure classification
tasks rely on fully-connected layers [12], networks for segmen-
tation rely on convolutional layers. Convolutional networks
have proven to show better results for segmentation [13].
The key factor in the development of networks for semantic
segmentation is to find ways to retain the spatial information
of the input. Besides fully connected networks, there are
approaches for semantic segmentation that are either region-
based or weakly supervised semantic segmentation [14]. How-
ever, for this work, only fully convolutional networks are
considered.

Chen et al. [15] propose using atrous convolutions to recover
spatial information of the input throughout the network. Sim-
ilarly like pooling layers, they are used to reduce the number
of parameters that need to be learned. However, the degree
of downsampling with atrous convolutional layers is much
smaller than with pooling layers enabling the network to retain
more spatial information.

III. DATA ACQUISITION AND PREPARATION

The images used in this work are extracted from the image
shown on top in figure 2. The image shows a bare die
embedded into a surrounding substrate made of polycarbonate.
The image was created with a Keyence VHX-5000 digital
microscope. It is a composition of a number of individual high-
resolution images covering smaller sections of the sample. The
full image has a size of 16746x7353 pixels. A single pixel
within the image covers approximately 1.1µm of the sample.



The actual gap width is in the range of 10µm to 20µm. Figure
3 shows a sketch of how the bare die is inserted into the cavity
of a substrate filled with glue substrate and indicates the gap
between the bare die and the substrate.

Fig. 2. Input images.

For inline inspection, processed images are on one hand
required to sufficiently capture the gap. On the other hand,
the image size should not be excessively large in order to
enable reasonable image processing.

Pretrained neural networks often require a certain input size.
Common input sizes are 224x224 [16] or 256x256 pixels [17].
The input data for the neural network training are images of a
component consisting of a bare die and the substrate material
of the PCB. In the planned production line, these images will
be captured, and immediately fed to the tool without any
further preprocessing besides those steps integrated into the
tool.

As mentioned before, feeding the whole image to a deep
neural network would end in an extensive demand on computa-
tional power and memory on the one hand and clash with size
restraints of pretrained models on the other hand. Therefore,
the main image is cropped into manageable sub-images. These
sub-images are then used for model training and evaluation.

In total, six sequences of sub-images are extracted, each
covering a horizontal section of the main image. Four se-
quences (a, b, e, and f) are taken from the top gap and
two (c and d) from the bottom one. The image extraction is
automated. For each sequence the position of the first sub-
image within the main image is defined by selecting the
coordinates of its upper left corner and adding the desired
sub-image width. The corresponding horizontal section is then
split into uniformly sized square images by moving the filter
to the right by one sub-image width as illustrated in figure 4.
The gap along the complete image width is captured by a set
of squared sub-images.

To enhance the dataset, the position of the first sub-image
and/or the image size of the crop are varied for each of the
sequences. The basic crop size is 424 x 424 pixels (sequence
a, b, c). The crops of sequence d are of size 371 x 371 pixels,
the crops of sequence e are 318 x 318 pixels and the cops of
sequence f have a size of 530 x 530 pixels. Additionally, the
horizontal starting points are slightly different as can be seen
by comparing the crops of sequence a and b. The odd values
of the crop sizes were chosen such that the corresponding di-
mensions in the actual sample are even values. As preparation
for further processing steps after the gap segmentation, the
latter are recorded in the naming of the crops together with
the name of the sequence. Sequence b is shifted by 224 pixels
to the right compared to sequence a.

As neural network training is done in a supervised fashion,
ground truth masks need to be provided that represent the gap
regions. The ground truth is manually defined for the complete
high-resolution image. In total, 128 images are acquired.
They are divided in a training set consisting of 82 images,
a validation set with 20 and a test set with 26 images.

Fig. 3. Illustration of bare die insertion into cavity of PCB board.

Fig. 4. The complete high-resolution image is split into multiple sub-images
along gaps.

IV. MODEL TRAINING

As outlined above, the task of gap-detection is equivalent
to image segmentation. The input is an image acquired by the
vision system. Expected output is a mask image that separates
gap from background. Three fully convolutional networks
were trained to accomplish the segmentation task:

1) U-Net: The first network architecture used is a U-Net
developed and pretrained for abnormality segmentation
in brain MRI by [17]. The U-Net was first introduced by
Ronneberger et al. [18] and revolutionised the approach
to semantic segmentation. The network is a fully con-
volutional network, initially developed for biomedical
image segmentation. It consists of an encoder path that
captures the context of the image and a symmetric



Fig. 5. Training progress for the U-Net:

decoder path that enables precise localisation. High-
resolution features of the encoder blocks are fed to the
horizontally corresponding decoder blocks where they
are combined with the upsampled output.

2) ResNet50 with fully connected decoder: The second
network architecture, is a ResNet50 [12] where the
fully connected layers of the classifier are exchanged
with convolutional layers as decoder as proposed by
[13]. In addition to the convolutional decoder, the skip
connections of the ResNet architecture help retain spatial
information necessary for the segmentation task.

3) ResNet50 with DeepLabV3: The third network archi-
tecture is a ResNet50 with the DeepLabV3 head as
decoder which was proposed by [15]. The DeepLabV3
utilizes atrous convolutions to retain the spatial informa-
tion of the input.

Both ResNet based models are pretrained on the COCO dataset
[19]. The models are trained using the adaptive moment
estimation (Adam) algorithm [20]. As a loss function binary
cross entropy was selected. The models are trained on 82
sub-images that are resized to 256x256. Data augmentation
is applied by randomly rotating the training samples. The
networks are trained over 30 epochs using two different
learning rates, 1.0e−4 and 1.0e−5. After every training epoch,
the models are tested on a validation data set consisting of
18 images. The model weights that performed best on the
validation data are then used on the test data for a final model
assessment.

V. RESULTS

The success of the segmentation task is determined by the
accuracy with which the gap is predicted based on the input
image. For our evaluations, the success of the segmentation
task is determined by the accuracy with which the gap is
predicted based on the input image. To evaluate the prediction
accuracy, every pixel value of the forecast image is compared

to the pixel values in a ground truth mask that was prepared
manually for the corresponding input image. Since the gap
makes up a comparatively small part of the image, intersection
over union (IoU) is chosen as evaluation measure.

Figure 5 shows the decrease of loss and increase in IoU
over the progress of model training for the U-Net at a learning
rate of 1.0e−5. While the training IoU keeps increasing, the
validation IoU slowly starts to decrease in the last epochs,
suggesting slight overfitting. The validation IoU reaches a
maximum level of approximately 80% throughout training,
but scores an even higher IoU of 82.45% on the test set. This
corresponds well to values reported in similar applications.
[21] perform segmentation of cracks in railway infrastructures
and achieve an IoU of 81% and [22] obtain an IoU of 83% in
a publicly available dataset on images with cracks in concrete.
While the IoU of the U-Net trained with a higher learning rate
is satisfying as well, the IoU level of the two other models is
much lower with an IoU of 60.31% for the next best model,
the ResNet50 with DeepLabV3 head.

Since the present task is more comparable to the original
task the U-Net was developed for, it is logical that the U-Net
performs better.

TABLE I
RESULTS OF MODEL TRAINING

Network architecture Learning rate IoU
U-Net 1.0e−4 0.7826
U-Net 1.0e−5 0.8245

ResNet50 + FCN 1.0e−4 0.4386
ResNet50 + FCN 1.0e−5 0.5187

ResNet50 + DeepLabV3 1.0e−4 0.6031
ResNet50 + DeepLabV3 1.0e−5 0.3096

Figure 6 illustrates a set of input images with the prediction
results and the corresponding ground truth masks. The left
four columns are the results from the U-Net, the right four
columns the results of the ResNet50 with DeepLabV3 head
on the same input images. The U-Net predicts the gaps with
much higher confidence. In addition, the prediction seems to
be sensible to irregularities on the gap border to the substrate
that are not identified in the ground truth. The border to the
bare die, however, is predicted quite accurately. From neural
network output, a print image can be generated for use in the
subsequent inkjet printing process.

VI. CONCLUSIONS AND FUTURE WORK

We introduce a method for optical inspection and adaptive
calculation of print images for printed electronics. The calcu-
lation of print images is accomplished via deployment of a
deep neural network. For this, three deep neural networks are
trained with transfer learning and fine-tuning on 82 images
extracted from a sample consisting of a bare die placed into
the cavity of a substrate. The images each contain sections
of the gap located between the substrate and the bare die. A
comparison of the results shows that the shallowest of the three
architectures performs best on the analysed problem. The deep



Fig. 6. Prediction results on four test images. The top row shows the prediction, the second row the ground truth and the bottom row the input image. Under
each column the corresponding IoU is noted. The left four columns, show the results of the U-Net, the right four columns are the corresponding results of
the ResNet50 model with DeepLabV3 head.

neural network is capable of detecting irregularities on the gap
border. The use case investigated here, relates to filling of a
gap after the placement of the bare die into the cavity on a
PCB. Similar methods seem promising for other process steps
like contacting of the bare die or layer-by-layer printing. While
the practical implementation of this use case still needs to be
examined, optical inspection together with inkjet printing is
a strong combination to enable zero-defect manufacturing for
printed electronics.

To improve the performance of the deep neural network on
the analyzed problem, overfitting has to be prevented. For this,
we plan to improve its generalization ability by introducing the
deep neural network to additional data samples. As with many
applications in industry, acquisition of large amounts of data is
difficult. Hence, the use of artificial data (e. g. using Domain
Randomization or Domain Adaptation) seems promising. Fur-
thermore, there are other applications that are very similar to
the one outlined in this paper. For example, contacting of bare
dies via inkjet-printing would be an interesting use case that
we plan to cover with our vision system.
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